一种适合于MC与SMC算法的哈希表设计

来源:互联网 发布:知而行天下 编辑:程序博客网 时间:2024/05/22 17:29

MC算法与SMC算法中的三角片焊接问题

  在之前的关于MC算法与SMC算法的博文中介绍了算法的实现,文章主要围绕算法的核心问题,即三角片如何产生的问题进行了详细的描述。但由于实际应用中需要的等值面Mesh数据不是三角片的简单并集,所以需要进行所谓的顶点焊接(Vertex Welding)来生成正确的拓扑结构以反应三角片之间的共用顶点关系。顶点焊接,简单的说就是把三角片中重合的顶点算作一个顶点加入顶点集。在之前博文中的代码实现里,采用了一种MeshBuilder类来实现这样的顶点焊接。其核心思想是采用哈希表来避免顶点的重复加入,逻辑简单点说就是下面这几步:

  1. 对三角片集合中的所有三角形
    1.  对三角形的三个顶点
      1. 若顶点P在哈希表中不存在
        1. 将顶点P加入顶点列表
        2. 将P加入哈希表
  2. 结束循环

  采用的哈希表是根据点坐标来计算哈希值的,这样相同的点必然对应一样的哈希值。这样重复的点就不会再被加入顶点列表。由于哈希表理论上有很好的存取速度,故MC算法和SMC算法即可采用此逻辑来将体元中的三角片焊接成具有拓扑结构的Mesh。

  

MC算法的焊接顶点SMC算法的焊接顶点

 

 

一种新的设计

  上文所述的实现方式是为了突出MC、SMC算法的“从每个体元中抽取三角片”的主逻辑而简化了顶点焊接的逻辑。事实上,采用上文说的哈希表会存在一定的时间和空间效率问题。之前的另一篇关于顶点焊接的文章“浅议顶点焊接与哈希表的设计”提出的几种哈希表,不能很好的同时兼顾时间和空间效率。在数据规模较大的情况下,顶点焊接逻辑很容易就成为算法的瓶颈。

  例如使用三维数组哈希表,很明显需要sizeof(long)*with*height*depth的空间,是巨大的空间消耗。而使用二维数组堆砌哈希表,则容易让更多的时间花费在顺序查找链表上。归根结底,这些将顶点所有可能位置都考虑到的哈希表,没有充分利用MC/SMC算法三角片产生的局部特点。

  考虑到MC/SMC中三角片是逐个从体元中抽取的,这样只有相邻两层的三角片顶点才可能产生重复现象如下图,那么三角片的产生,应该可以这样考虑:

  1. 抽取第i层体元的三角片并焊接之
  2. 抽取第i+1层体元的三角片并焊接之
  3. 焊接第i层三角片与第i+1层三角片

  为此,可以设计一个有两层二维数组组成的哈希表,二维数组的尺寸都是width*height。用以表示一层体元上下两层顶点的可能的哈希位置。每抽取完一层的体元,这两层数组会往下自动推进一层,同时还需要有变量记录当前指示的层位置。

  对于SMC算法,由于顶点只能在格点上,故基于此原理的哈希表可以实现如下:

class SMCTriangleNetHashTable{    public int CurrentLayerIndex;    int stx;    int sty;    int width;    int height;    List<int[,]> mapList;    public SMCTriangleNetHashTable(int minx, int miny, int width, int height)    {        this.stx = minx - 1;        this.sty = miny - 1;        this.width = width + 2;        this.height = height + 2;        mapList = new List<int[,]>(2);        mapList.Add(new int[this.width, this.height]);        mapList.Add(new int[this.width, this.height]);        SetDefaultValue(0);        SetDefaultValue(1);    }    public void SetDefaultValue(int index0_1)    {        for (int i = 0; i < width; i++)        {            for (int j = 0; j < height; j++)            {                mapList[index0_1][i, j] = -1;            }        }    }    public void IncreaseIndex()    {        CurrentLayerIndex++;        SetDefaultValue(0);        int[,] temp = mapList[0];        mapList[0] = mapList[1];        mapList[1] = temp;    }    public void SetHashValue(int x, int y, int z, int value)    {        int index0_1 = z - CurrentLayerIndex;        mapList[index0_1][x - stx, y - sty] = value;    }    public int GetHashValue(int x, int y, int z)    {        int index0_1 = z - CurrentLayerIndex;        return mapList[index0_1][x - stx, y - sty];    }}

  这样SMC算法的实现形式如下:

public class SMCProcessor{    struct OriginalTriangle    {        public Int16Triple P0;        public Int16Triple P1;        public Int16Triple P2;        public OriginalTriangle(int p0x, int p0y, int p0z, int p1x, int p1y, int p1z, int p2x, int p2y, int p2z)        {            P0.X = p0x;            P0.Y = p0y;            P0.Z = p0z;            P1.X = p1x;            P1.Y = p1y;            P1.Z = p1z;            P2.X = p2x;            P2.Y = p2y;            P2.Z = p2z;        }    }    public static byte VULF = 1 << 0;    public static byte VULB = 1 << 1;    public static byte VLLB = 1 << 2;    public static byte VLLF = 1 << 3;    public static byte VURF = 1 << 4;    public static byte VURB = 1 << 5;    public static byte VLRB = 1 << 6;    public static byte VLRF = 1 << 7;    //以上为体素为实点的位标记    public static Int16Triple[] PointIndexToPointDelta = new Int16Triple[8]    {        new Int16Triple(0, 1, 1 ),        new Int16Triple(0, 1, 0 ),        new Int16Triple(0, 0, 0 ),        new Int16Triple(0, 0, 1 ),        new Int16Triple(1, 1, 1 ),        new Int16Triple(1, 1, 0 ),        new Int16Triple(1, 0, 0 ),        new Int16Triple(1, 0, 1 )    };//体元内每个体素相对基准体素坐标的偏移    public static byte[] PointIndexToFlag = new byte[8]    {        VULF,        VULB,        VLLB,        VLLF,        VURF,        VURB,        VLRB,        VLRF    };//每个体素对应的位标记    BitMap3d bmp;    int d;    int h;    int w;    int wh;    public SMCProcessor(BitMap3d bitmap)    {        this.bmp = bitmap;    }    public Mesh GenerateSurface()    {        d = bmp.depth;        h = bmp.height;        w = bmp.width;        wh = w * h;        Int16Triple[] temp = new Int16Triple[8];        Mesh m = new Mesh();        OriginalTriangle[] tempTriangles = new OriginalTriangle[4];        SMCTriangleNetHashTable hash = new SMCTriangleNetHashTable(0, 0, w, h);        for (int k = 0; k <= d - 1; k++)        {            for (int j = 0; j <= h - 1; j++)            {                for (int i = 0; i <= w - 1; i++)                {                    byte value = GetConfig(temp, bmp, i, j, k);                    if (value == 0 || value == 255)                        continue;                    int tcount = ExtractTriangles(temp, value, i, j, k, tempTriangles);                    for (int tindex = 0; tindex < tcount; tindex++)                    {                        MergeTriangleIntoMesh(m, hash, tempTriangles[tindex]);                    }                }            }            hash.IncreaseIndex();        }        return m;    }    private byte GetConfig(Int16Triple[] temp, BitMap3d flagsMap, int indexInWidth, int indexInHeight, int indexInDepth)    {        byte value = 0;        for (int pi = 0; pi < 8; pi++)        {            temp[pi].X = indexInWidth + PointIndexToPointDelta[pi].X;            temp[pi].Y = indexInHeight +PointIndexToPointDelta[pi].Y;            temp[pi].Z = indexInDepth + PointIndexToPointDelta[pi].Z;            if (temp[pi].X < w && temp[pi].X >= 0                && temp[pi].Y < h && temp[pi].Y >= 0                && temp[pi].Z < d && temp[pi].Z >= 0                && bmp.data[temp[pi].X + w * (temp[pi].Y) + wh * (temp[pi].Z)] == BitMap3d.WHITE)            {                value |= PointIndexToFlag[pi];            }        }        return value;    }    private int ExtractTriangles(Int16Triple[] temp, byte value, int indexInWidth, int indexInHeight, int indexInDepth, OriginalTriangle[] result)    {        int tcount = 0;        if (SMCTable.TableFat[value, 0] != -1)        {            int index = 0;            while (SMCTable.TableFat[value, index] != -1)            {                Int16Triple t0 = temp[SMCTable.TableFat[value, index]];                Int16Triple t1 = temp[SMCTable.TableFat[value, index + 1]];                Int16Triple t2 = temp[SMCTable.TableFat[value, index + 2]];                result[tcount] = new OriginalTriangle(t0.X, t0.Y, t0.Z, t1.X, t1.Y, t1.Z, t2.X, t2.Y, t2.Z);                tcount++;                index += 3;            }        }        return tcount;    }    private void MergeTriangleIntoMesh(Mesh mesh, SMCTriangleNetHashTable hashMap, OriginalTriangle ot)    {        int p0x = ot.P0.X;        int p0y = ot.P0.Y;        int p0z = ot.P0.Z;        int p1x = ot.P1.X;        int p1y = ot.P1.Y;        int p1z = ot.P1.Z;        int p2x = ot.P2.X;        int p2y = ot.P2.Y;        int p2z = ot.P2.Z;        int p0i;        int p1i;        int p2i;        int index = 0;        index = hashMap.GetHashValue(p0x, p0y, p0z);        if (index == -1)        {            p0i = mesh.AddVertex(new Point3d(p0x, p0y, p0z));            hashMap.SetHashValue(p0x, p0y, p0z, p0i);        }        else        {            p0i = index;        }        index = hashMap.GetHashValue(p1x, p1y, p1z);        if (index == -1)        {            p1i = mesh.AddVertex(new Point3d(p1x, p1y, p1z));            hashMap.SetHashValue(p1x, p1y, p1z, p1i);        }        else        {            p1i = index;        }        index = hashMap.GetHashValue(p2x, p2y, p2z);        if (index == -1)        {            p2i = mesh.AddVertex(new Point3d(p2x, p2y, p2z));            hashMap.SetHashValue(p2x, p2y, p2z, p2i);        }        else        {            p2i = index;        }        Triangle t = new Triangle(p0i, p1i, p2i);        mesh.AddFace(t);    }}

  对于MC算法,由于定点不在格点上,而是在格子的边上,这样必须要把格子的边与格点坐标相对应。不难发现,从每一个格点出发,想着X,Y,Z轴正方向可以引三条边,这样每一个边都能按此方法找到所出发的格点。于是这样就可以构造一个二维数组:

class MCTriangleNetHashTable{    public int CurrentLayerIndex;    int stx;    int sty;    int width;    int height;    List<int[,,]> mapList;    public MCTriangleNetHashTable(int minx, int miny, int width, int height)    {        this.stx = minx - 1;        this.sty = miny - 1;        this.width = width + 2;        this.height = height + 2;        mapList = new List<int[,,]>(2);        mapList.Add(new int[this.width, this.height,3]);        mapList.Add(new int[this.width, this.height,3]);        SetDefaultValue(0);        SetDefaultValue(1);    }    public void SetDefaultValue(int index0_1)    {        for (int i = 0; i < width; i++)        {            for (int j = 0; j < height; j++)            {                mapList[index0_1][i, j, 0] = -1;                mapList[index0_1][i, j, 1] = -1;                mapList[index0_1][i, j, 2] = -1;            }        }    }    public void IncreaseIndex()    {        CurrentLayerIndex++;        SetDefaultValue(0);        int[,,] temp = mapList[0];        mapList[0] = mapList[1];        mapList[1] = temp;    }    public void SetHashValue(int x, int y, int z,int d, int value)    {        int index0_1 = z - CurrentLayerIndex;        mapList[index0_1][x - stx, y - sty,d] = value;    }    public int GetHashValue(int x, int y, int z,int d)    {        int index0_1 = z - CurrentLayerIndex;        return mapList[index0_1][x - stx, y - sty,d];    }}

  基于此种设计的MC算法的实现代码如下:

public class MCProcessor{    struct OriginalTriangle    {        public Int16Triple CellCoord;        public int E0;        public int E1;        public int E2;        public OriginalTriangle(int x, int y, int z, int ei0, int ei1, int ei2)        {            CellCoord.X = x;            CellCoord.Y = y;            CellCoord.Z = z;            E0 = ei0;            E1 = ei1;            E2 = ei2;        }    }    public static byte VULF = 1 << 0;    public static byte VULB = 1 << 1;    public static byte VLLB = 1 << 2;    public static byte VLLF = 1 << 3;    public static byte VURF = 1 << 4;    public static byte VURB = 1 << 5;    public static byte VLRB = 1 << 6;    public static byte VLRF = 1 << 7;    //以上为体素为实点的位标记    public static Int16Triple[] PointIndexToPointDelta = new Int16Triple[8]    {        new Int16Triple(0, 1, 1 ),        new Int16Triple(0, 1, 0 ),        new Int16Triple(0, 0, 0 ),        new Int16Triple(0, 0, 1 ),        new Int16Triple(1, 1, 1 ),        new Int16Triple(1, 1, 0 ),        new Int16Triple(1, 0, 0 ),        new Int16Triple(1, 0, 1 )    };//体元内每个体素相对基准体素坐标的偏移    public static byte[] PointIndexToFlag = new byte[8]    {        VULF,        VULB,        VLLB,        VLLF,        VURF,        VURB,        VLRB,        VLRF    };//每个体素对应的位标记    public static int[,] EdgeIndexToEdgeVertexIndex = new int[12, 2]    {        {0,1}, {1,2},         {2,3},{3,0},        {4,5},{5,6},         {6,7}, {7,4},        {0,4}, {1,5},         {2,6}, {3,7}    };//每个边对应的两顶点体素的索引    public static Int16Quad[] CubeEdgeMapTable = new Int16Quad[12]    {        new Int16Quad(0,1,0,1),        new Int16Quad(0,0,0,0),        new Int16Quad(0,0,0,1),        new Int16Quad(0,0,1,0),        new Int16Quad(1,1,0,1),        new Int16Quad(1,0,0,0),        new Int16Quad(1,0,0,1),        new Int16Quad(1,0,1,0),        new Int16Quad(0,1,1,2),        new Int16Quad(0,1,0,2),        new Int16Quad(0,0,0,2),        new Int16Quad(0,0,1,2),    };    protected BitMap3d bmp;    protected int d;    protected int h;    protected int w;    protected int wh;    public MCProcessor(BitMap3d bitmap)    {        this.bmp = bitmap;    }    public Mesh GenerateSurface()    {        d = bmp.depth;        h = bmp.height;        w = bmp.width;        wh = w * h;        Int16Triple[] temp = new Int16Triple[8];        Mesh m = new Mesh();        OriginalTriangle[] tempTriangles = new OriginalTriangle[6];        MCTriangleNetHashTable hash = new MCTriangleNetHashTable(0, 0, w, h);        for (int k = 0; k <= d - 1; k++)        {            for (int j = 0; j <= h - 1; j++)            {                for (int i = 0; i <= w - 1; i++)                {                    byte value = GetConfig(temp, bmp, i, j, k);                    if (value == 0 || value == 255)                        continue;                    int tcount = ExtractTriangles(temp, value, i, j, k, tempTriangles);                    for (int tindex = 0; tindex < tcount; tindex++)                    {                        MergeTriangleIntoMesh(m, hash, tempTriangles[tindex]);                    }                }            }            hash.IncreaseIndex();        }        return m;    }    private byte GetConfig(Int16Triple[] temp, BitMap3d flagsMap, int indexInWidth, int indexInHeight, int indexInDepth)    {        byte value = 0;        for (int pi = 0; pi < 8; pi++)        {            temp[pi].X = indexInWidth + PointIndexToPointDelta[pi].X;            temp[pi].Y = indexInHeight + PointIndexToPointDelta[pi].Y;            temp[pi].Z = indexInDepth + PointIndexToPointDelta[pi].Z;            if (temp[pi].X < w && temp[pi].X >= 0                && temp[pi].Y < h && temp[pi].Y >= 0                && temp[pi].Z < d && temp[pi].Z >= 0                && IsInsideIsoSurface(temp[pi].X,temp[pi].Y,temp[pi].Z))            {                value |= PointIndexToFlag[pi];            }        }        return value;    }    private int ExtractTriangles(Int16Triple[] temp, byte value, int indexInWidth, int indexInHeight, int indexInDepth, OriginalTriangle[] result)    {        int tcount = 0;        if (MCTable.TriTable[value, 0] != -1)        {            int index = 0;            while (MCTable.TriTable[value, index] != -1)            {                int e0index = MCTable.TriTable[value, index];                int e1index = MCTable.TriTable[value, index + 1];                int e2index = MCTable.TriTable[value, index + 2];                result[tcount] = new OriginalTriangle(indexInWidth,  indexInHeight, indexInDepth,e0index,e1index,e2index);                tcount++;                index += 3;            }        }        return tcount;    }    private void MergeTriangleIntoMesh(Mesh mesh, MCTriangleNetHashTable hashMap, OriginalTriangle ot)    {        int e0i= CubeEdgeMapTable[ot.E0].D;        int p0x = ot.CellCoord.X + CubeEdgeMapTable[ot.E0].A;        int p0y = ot.CellCoord.Y + CubeEdgeMapTable[ot.E0].B;        int p0z = ot.CellCoord.Z + CubeEdgeMapTable[ot.E0].C;        int e1i = CubeEdgeMapTable[ot.E1].D;        int p1x = ot.CellCoord.X + CubeEdgeMapTable[ot.E1].A;        int p1y = ot.CellCoord.Y + CubeEdgeMapTable[ot.E1].B;        int p1z = ot.CellCoord.Z + CubeEdgeMapTable[ot.E1].C;        int e2i = CubeEdgeMapTable[ot.E2].D;        int p2x = ot.CellCoord.X + CubeEdgeMapTable[ot.E2].A;        int p2y = ot.CellCoord.Y + CubeEdgeMapTable[ot.E2].B;        int p2z = ot.CellCoord.Z + CubeEdgeMapTable[ot.E2].C;        int p0i;        int p1i;        int p2i;        int index = 0;        index = hashMap.GetHashValue(p0x, p0y, p0z,e0i);        if (index == -1)        {            Point3d interp = GetIntersetedPoint(ot.CellCoord.X, ot.CellCoord.Y, ot.CellCoord.Z, ot.E0);            p0i = mesh.AddVertex(interp);            hashMap.SetHashValue(p0x, p0y, p0z,e0i,p0i);        }        else        {            p0i = index;        }        index = hashMap.GetHashValue(p1x, p1y, p1z,e1i);        if (index == -1)        {            Point3d interp = GetIntersetedPoint(ot.CellCoord.X, ot.CellCoord.Y, ot.CellCoord.Z, ot.E1);            p1i = mesh.AddVertex(interp);            hashMap.SetHashValue(p1x, p1y, p1z,e1i ,p1i);        }        else        {            p1i = index;        }        index = hashMap.GetHashValue(p2x, p2y, p2z,e2i);        if (index == -1)        {            Point3d interp = GetIntersetedPoint(ot.CellCoord.X, ot.CellCoord.Y, ot.CellCoord.Z, ot.E2);            p2i = mesh.AddVertex(interp);            hashMap.SetHashValue(p2x, p2y, p2z,e2i ,p2i);        }        else        {            p2i = index;        }        Triangle t = new Triangle(p0i, p1i, p2i);        mesh.AddFace(t);    }    protected virtual Point3d GetIntersetedPoint(int cx,int cy,int cz, int ei)    {        int p0i = EdgeIndexToEdgeVertexIndex[ei, 0];        int p1i = EdgeIndexToEdgeVertexIndex[ei, 1];        int p0X = cx+PointIndexToPointDelta[p0i].X;        int p0Y = cy + PointIndexToPointDelta[p0i].Y;        int p0Z = cz + PointIndexToPointDelta[p0i].Z;        int p1X = cx + PointIndexToPointDelta[p1i].X;        int p1Y = cy + PointIndexToPointDelta[p1i].Y;        int p1Z = cz + PointIndexToPointDelta[p1i].Z;                   return new Point3d((p0X+p1X)/2.0f,(p0Y+p1Y)/2.0f,(p0Z+p1Z)/2.0f);    }    protected virtual bool IsInsideIsoSurface(int x,int y,int z)    {        return bmp.data[x+ w * y + wh * z] == BitMap3d.WHITE;    }    protected virtual bool InRange(int x, int y, int z)    {            if (x < w && x >= 0                && y < h && y >= 0                && z < d && z >= 0)            {                return true;            }            return false;    }} 

 

效率对比

  使用用Phantom数据,对其抽取MC/SMC等值面,其中MC/SMC算法分别采用堆砌二维数组与本文的设计,其效率对比如下表所示。

算法

MC(堆砌)

MC(本文)

SMC(堆砌)

SMC(本文)

时间

10211ms

6772ms

8235ms

5104ms


0 0
原创粉丝点击