流形学习-高维数据的降维与可视化

来源:互联网 发布:java 生产表单创建表 编辑:程序博客网 时间:2024/06/05 01:08

http://blog.csdn.net/u012162613/article/details/45920827转自

1.流形学习的概念

流形学习方法(Manifold Learning),简称流形学习,自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。

假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。

以上选自百度百科

简单地理解,流形学习方法可以用来对高维数据降维,如果将维度降到2维或3维,我们就能将原始数据可视化,从而对数据的分布有直观的了解,发现一些可能存在的规律。

2.流形学习的分类

可以将流形学习方法分为线性的和非线性的两种,线性的流形学习方法如我们熟知的主成份分析(PCA),非线性的流形学习方法如等距映射(Isomap)、拉普拉斯特征映射(Laplacian eigenmaps,LE)、局部线性嵌入(Locally-linear embedding,LLE)。

当然,流形学习方法不止这些,因学识尚浅,在此我就不展开了,对于它们的原理,也不是一篇文章就能说明白的。对各种流形学习方法的介绍,网上有一篇不错的读物(原作已找不到):流形学习 (Manifold Learning)

3.高维数据降维与可视化

对于数据降维,有一张图片总结得很好(同样,我不知道原始出处):

这里写图片描述

图中基本上包括了大多数流形学习方法,不过这里面没有t-SNE,相比于其他算法,t-SNE算是比较新的一种方法,也是效果比较好的一种方法。t-SNE是深度学习大牛Hinton和lvdmaaten(他的弟子?)在2008年提出的,lvdmaaten对t-SNE有个主页介绍:tsne,包括论文以及各种编程语言的实现。

接下来是一个小实验,对MNIST数据集降维和可视化,采用了十多种算法,算法在sklearn里都已集成,画图工具采用matplotlib。大部分实验内容都是参考sklearn这里的example,稍微做了些修改。

Matlab用户可以使用lvdmaaten提供的工具箱: drtoolbox

- 加载数据

MNIST数据从sklearn集成的datasets模块获取,代码如下,为了后面观察起来更明显,我这里只选取n_class=5,也就是0~4这5种digits。每张图片的大小是8*8,展开后就是64维。

<pre name="code" class="prettyprint"><code class="hljs matlab has-numbering">digits = <span class="hljs-transposed_variable">datasets.</span>load_digits(n_class=<span class="hljs-number">5</span>)X = <span class="hljs-transposed_variable">digits.</span>datay = <span class="hljs-transposed_variable">digits.</span>targetprint <span class="hljs-transposed_variable">X.</span>shapen_img_per_row = <span class="hljs-number">20</span>img = <span class="hljs-transposed_variable">np.</span><span class="hljs-built_in">zeros</span>((<span class="hljs-number">10</span> * n_img_per_row, <span class="hljs-number">10</span> * n_img_per_row))<span class="hljs-keyword">for</span> <span class="hljs-built_in">i</span> in range(n_img_per_row):    ix = <span class="hljs-number">10</span> * <span class="hljs-built_in">i</span> + <span class="hljs-number">1</span>    <span class="hljs-keyword">for</span> <span class="hljs-built_in">j</span> in range(n_img_per_row):        iy = <span class="hljs-number">10</span> * <span class="hljs-built_in">j</span> + <span class="hljs-number">1</span>        img<span class="hljs-matrix">[ix:ix + <span class="hljs-number">8</span>, iy:iy + <span class="hljs-number">8</span>]</span> = X<span class="hljs-matrix">[i * n_img_per_row + j].</span><span class="hljs-built_in">reshape</span>((<span class="hljs-number">8</span>, <span class="hljs-number">8</span>))<span class="hljs-transposed_variable">plt.</span>imshow(img, cmap=<span class="hljs-transposed_variable">plt.</span><span class="hljs-transposed_variable">cm.</span>binary)<span class="hljs-transposed_variable">plt.</span>title(<span class="hljs-string">'A selection from the 64-dimensional digits dataset'</span>)</code>

运行代码,获得X的大小是(901,64),也就是901个样本。下图显示了部分样本:

这里写图片描述


- 降维

以t-SNE为例子,代码如下,n_components设置为3,也就是将64维降到3维,init设置embedding的初始化方式,可选random或者pca,这里用pca,比起random init会更stable一些。

<pre name="code" class="prettyprint"><code class="hljs erlang has-numbering"><span class="hljs-function"><span class="hljs-title">print</span><span class="hljs-params">(<span class="hljs-string">"Computing t-SNE embedding"</span>)</span><span class="hljs-title">tsne</span> = <span class="hljs-title">manifold</span>.TSNE<span class="hljs-params">(n_components=<span class="hljs-number">3</span>, init='pca', random_state=<span class="hljs-number">0</span>)</span><span class="hljs-title">t0</span> = <span class="hljs-title">time</span><span class="hljs-params">()</span>X_<span class="hljs-title">tsne</span> = <span class="hljs-title">tsne</span>.<span class="hljs-title">fit_transform</span><span class="hljs-params">(<span class="hljs-variable">X</span>)</span><span class="hljs-title">plot_embedding_2d</span><span class="hljs-params">(<span class="hljs-variable">X_tsne</span>[:,<span class="hljs-number">0</span>:<span class="hljs-number">2</span>],<span class="hljs-string">"t-SNE 2D"</span>)</span><span class="hljs-title">plot_embedding_3d</span><span class="hljs-params">(<span class="hljs-variable">X_tsne</span>,<span class="hljs-string">"t-SNE 3D (time %.2fs)"</span> <span class="hljs-comment">%(time() - t0))</span></span></span></code>

降维后得到X_ tsne,大小是(901,3),plot_ embedding_ 2d()将前2维数据可视化,plot_ embedding_ 3d()将3维数据可视化。

函数plot_ embedding_ 3d定义如下:

<code class="hljs python has-numbering"><span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">plot_embedding_3d</span><span class="hljs-params">(X, title=None)</span>:</span>    <span class="hljs-comment">#坐标缩放到[0,1]区间</span>    x_min, x_max = np.min(X,axis=<span class="hljs-number">0</span>), np.max(X,axis=<span class="hljs-number">0</span>)    X = (X - x_min) / (x_max - x_min)    <span class="hljs-comment">#降维后的坐标为(X[i, 0], X[i, 1],X[i,2]),在该位置画出对应的digits</span>    fig = plt.figure()    ax = fig.add_subplot(<span class="hljs-number">1</span>, <span class="hljs-number">1</span>, <span class="hljs-number">1</span>, projection=<span class="hljs-string">'3d'</span>)    <span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(X.shape[<span class="hljs-number">0</span>]):        ax.text(X[i, <span class="hljs-number">0</span>], X[i, <span class="hljs-number">1</span>], X[i,<span class="hljs-number">2</span>],str(digits.target[i]),                 color=plt.cm.Set1(y[i] / <span class="hljs-number">10.</span>),                 fontdict={<span class="hljs-string">'weight'</span>: <span class="hljs-string">'bold'</span>, <span class="hljs-string">'size'</span>: <span class="hljs-number">9</span>})    <span class="hljs-keyword">if</span> title <span class="hljs-keyword">is</span> <span class="hljs-keyword">not</span> <span class="hljs-keyword">None</span>:        plt.title(title)</code>

0 0