决策树

来源:互联网 发布:大同市卫计委官网通知 编辑:程序博客网 时间:2024/05/16 16:24

一、决策树概念

决策树通过把实例从根节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性的一个可能值。分类实例的方法是从这棵树的根节点开始,测试这个结点的属性,然后按照给定实例的属性值对应的树枝向下移动。然后这个过程在以新结点的根的子树上重复。


二、举例认识决策树


构造决策树如下:


具体来看:



三、决策树算法ID3

通过自顶向下构造决策树来进行学习。构造过程是从“哪一个属性将在树的根结点被测试?”这个问题开始的。为了回答这个问题,使用统计测试来确定每一个实例属性单独分类训练样例的能力。分类能力最好的属性被选作树的根结点的测试。然后为根节点属性的每个可能值产生一个分支,并把训练样例排列到适当的分支之下。然后重复整个过程,用每个分支结点关联的训练样例来选取在该点被测试的最佳属性。这形成了对合格决策树的贪婪搜索(greedy search),也就是算法从不回溯重新考虑原来的选。

 所以,ID3的思想便是:

  1. 自顶向下的贪婪搜索遍历可能的决策树空间构造决策树(此方法是ID3算法和C4.5算法的基础);
  2. 从“哪一个属性将在树的根节点被测试”开始;
  3. 使用统计测试来确定每一个实例属性单独分类训练样例的能力,分类能力最好的属性作为树的根结点测试(如何定义或者评判一个属性是分类能力最好的呢?这便是下文将要介绍的信息增益,or 信息增益率)。
  4. 然后为根结点属性的每个可能值产生一个分支,并把训练样例排列到适当的分支(也就是说,样例的该属性值对应的分支)之下。
  5. 重复这个过程,用每个分支结点关联的训练样例来选取在该点被测试的最佳属性。
具体算法过程如下:



四、哪个属性是最佳的分类属性呢

熵(entropy):刻画了任意样例集的纯度(purity)。

熵确定了要编码集合S中任意成员(即以均匀的概率随机抽出的一个成员)的分类所需要的最小二进制位数。
如果目标属性具有c个不同的值,那么S相对c个状态(c-wise)的分类的熵定义为:


Pi是S中属于类别i的比例。
信息增益(information gain):一个属性的信息增益就是由于使用这个属性分割样例而导致的期望熵降低


Values(A)是属性A所有可能值的集合,S是S中属性A的值为v的子集。

   第一个Entropy(S)是熵定义,第二个则是信息增益Gain(S,A)的定义,而Gain(S,A)由第一个Entropy(S)计算出,记住了。

    对于上面的例子,S是一套有关天气的训练样例,描述它的属性包括可能是具有Weak和Strong两个值的Wind。像前面一样,假定S包含14个样例,[9+5-]。在这14个样例中,假定正例中的6个和反例中的2个有Wind =Weak其他的有Wind=Strong。由于按照属性Wind分类14个样例得到的信息增益可以计算如下。


对于上面的例子,下图是ID3算法第一步后形成的部分决策树


如上图,训练样例被排列到对应的分支结点。分支Overcast的所有样例都是正例,所以成为目标分类为Yes的叶结点。另两个结点将被进一步展开,方法是按照新的样例子集选取信息增益最高的属性。


五、C4.5算法

 C4.5,是机器学习算法中的另一个分类决策树算法,它是决策树(决策树也就是做决策的节点间的组织方式像一棵树,其实是一个倒树)核心算法,也是上文1.2节所介绍的ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。

    决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。

    既然说C4.5算法是ID3的改进算法,那么C4.5相比于ID3改进的地方有哪些呢?:

  1. 用信息增益率来选择属性。ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(entropy,熵是一种不纯度度量准则),也就是熵的变化值,而C4.5用的是信息增益率。对,区别就在于一个是信息增益,一个是信息增益率。
  2. 在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致overfitting。
  3. 对非离散数据也能处理。
  4. 能够对不完整数据进行处理

    针对上述第一点,解释下:一般来说率就是用来取平衡用的,就像方差起的作用差不多,比如有两个跑步的人,一个起点是10m/s的人、其10s后为20m/s;另一个人起速是1m/s、其1s后为2m/s。如果紧紧算差值那么两个差距就很大了,如果使用速度增加率(加速度,即都是为1m/s^2)来衡量,2个人就是一样的加速度。因此,C4.5克服了ID3用信息增益选择属性时偏向选择取值多的属性的不足。

C4.5算法之信息增益率

 OK,既然上文中提到C4.5用的是信息增益率,那增益率的具体是如何定义的呢?:

    是的,在这里,C4.5算法不再是通过信息增益来选择决策属性。一个可以选择的度量标准是增益比率gain ratioQuinlan 1986)。增益比率度量是用前面的增益度量Gain(S,A)和分裂信息度量SplitInformation(S,A)来共同定义的,如下所示:


其中S1到Sc是c个值的属性A分割S而形成的c个样例子集。注意分裂信息实际上就是S关于属性A的各值的熵。这与我们前面对熵的使用不同,在那里我们只考虑S关于学习到的树要预测的目标属性的值的熵。

    请注意,分裂信息项阻碍选择值为均匀分布的属性。例如,考虑一个含有n个样例的集合被属性A彻底分割(译注:分成n组,即一个样例一组)。这时分裂信息的值为log2n。相反,一个布尔属性B分割同样的n个实例,如果恰好平分两半,那么分裂信息是1。如果属性A和B产生同样的信息增益,那么根据增益比率度量,明显B会得分更高。

    使用增益比率代替增益来选择属性产生的一个实际问题是,当某个Si接近S(|Si|?|S|)时分母可能为0或非常小。如果某个属性对于S的所有样例有几乎同样的值,这时要么导致增益比率未定义,要么是增益比率非常大。为了避免选择这种属性,我们可以采用这样一些启发式规则,比如先计算每个属性的增益,然后仅对那些增益高过平均值的属性应用增益比率测试(Quinlan 1986)。

    除了信息增益,Lopez de Mantaras1991)介绍了另一种直接针对上述问题而设计的度量,它是基于距离的(distance-based)。这个度量标准基于所定义的一个数据划分间的距离尺度。具体更多请参看:Tom M.Mitchhell所著的机器学习之3.7.3节。


0 0
原创粉丝点击