tasklet机制和工作队列

来源:互联网 发布:什么软件小说免费 编辑:程序博客网 时间:2024/06/01 08:38

原文link:http://blog.chinaunix.net/uid-28236237-id-3450753.html

1. Tasklet机制分析    

上面我们介绍了软中断机制,linux内核为什么还要引入tasklet机制呢?主要原因是软中断的pending标志位也就32位,一般情况是不随意增加软中断处理的。而且内核也没有提供通用的增加软中断的接口。其次内,软中断处理函数要求可重入,需要考虑到竞争条件比较多,要求比较高的编程技巧。所以内核提供了tasklet这样的一种通用的机制。    

其实每次写总结的文章,总是想把细节的东西说明白,所以越写越多。这样做的好处是能真正理解其中的机制。但是,内容太多的一个坏处就是难道记忆,所以,在讲清楚讲详细的同时,我还要把精髓总结出来。Tasklet的特点,也是tasklet的精髓就是:tasklet不能休眠,同一个tasklet不能在两个CPU上同时运行,但是不同tasklet可能在不同CPU上同时运行,则需要注意共享数据的保护。    

主要的数据结构    

static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec);    

static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec);    

struct tasklet_struct            
{             
    struct tasklet_struct *next;            
    unsigned long state;             
    atomic_t count;             
    void (*func)(unsigned long);            
    unsigned long data;             
};

如何使用tasklet    

使用tasklet比较简单,只需要初始化一个tasklet_struct结构体,然后调用tasklet_schedule,就能利用tasklet机制执行初始化的func函数。    

static inline void tasklet_schedule(struct tasklet_struct *t)            
{             
    if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))            
        __tasklet_schedule(t);             
}

tasklet_schedule处理过程也比较简单,就是把tasklet_struct结构体挂到tasklet_vec链表或者挂接到tasklet_hi_vec链表上,并调度软中断TASKLET_SOFTIRQ或者HI_SOFTIRQ    

void __tasklet_schedule(struct tasklet_struct *t)             
{             
    unsigned long flags;             
             
    local_irq_save(flags);             
    t->next = NULL;             
    *__get_cpu_var(tasklet_vec).tail = t;            
    __get_cpu_var(tasklet_vec).tail = &(t->next);            
    raise_softirq_irqoff(TASKLET_SOFTIRQ);            
    local_irq_restore(flags);             
}             
             
EXPORT_SYMBOL(__tasklet_schedule);            
             
void __tasklet_hi_schedule(struct tasklet_struct *t)             
{             
    unsigned long flags;             
             
    local_irq_save(flags);             
    t->next = NULL;             
    *__get_cpu_var(tasklet_hi_vec).tail = t;            
    __get_cpu_var(tasklet_hi_vec).tail = &(t->next);            
    raise_softirq_irqoff(HI_SOFTIRQ);            
    local_irq_restore(flags);             
}             
             
EXPORT_SYMBOL(__tasklet_hi_schedule);

Tasklet执行过程    

Tasklet_action在软中断TASKLET_SOFTIRQ被调度到后会被执行,它从tasklet_vec链表中把tasklet_struct结构体都取下来,然后逐个执行。如果t->count的值等于0,说明这个tasklet在调度之后,被disable掉了,所以会将tasklet结构体重新放回到tasklet_vec链表,并重新调度TASKLET_SOFTIRQ软中断,在之后enable这个tasklet之后重新再执行它。    

static void tasklet_action(struct softirq_action *a)            
{             
    struct tasklet_struct *list;            
             
    local_irq_disable();             
    list = __get_cpu_var(tasklet_vec).head;            
    __get_cpu_var(tasklet_vec).head = NULL;            
    __get_cpu_var(tasklet_vec).tail = &__get_cpu_var(tasklet_vec).head;            
    local_irq_enable();             
             
    while (list)            
    {             
        struct tasklet_struct *t = list;            
             
        list = list->next;             
             
        if (tasklet_trylock(t))            
        {             
            if (!atomic_read(&t->count))            
            {             
                if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))            
                    BUG();             
                t->func(t->data);            
                tasklet_unlock(t);            
                continue;            
            }             
            tasklet_unlock(t);             
        }             
             
        local_irq_disable();             
        t->next = NULL;             
        *__get_cpu_var(tasklet_vec).tail = t;            
        __get_cpu_var(tasklet_vec).tail = &(t->next);            
        __raise_softirq_irqoff(TASKLET_SOFTIRQ);            
        local_irq_enable();             
    }             
}

2. Linux工作队列    

前面已经介绍了tasklet机制,有了tasklet机制为什么还要增加工作队列机制呢?我的理解是由于tasklet机制的限制,变形tasklet中的回调函数有很多的限制,比如不能有休眠的操作等等。而是用工作队列机制,需要处理的函数在进程上下文中调用,休眠操作都是允许的。但是工作队列的实时性不如tasklet,采用工作队列的例程可能不能在短时间内被调用执行。    

数据结构说明    

首先需要说明的是workqueue_struct和cpu_workqueue_struct这两个数据结构,创建一个工作队列首先需要创建workqueue_struct,然后可以在每个CPU上创建一个cpu_workqueue_struct管理结构体。    

struct cpu_workqueue_struct            
{             
             
    spinlock_t lock;             
             
    struct list_head worklist;            
    wait_queue_head_t more_work;            
    struct work_struct *current_work;            
             
    struct workqueue_struct *wq;            
    struct task_struct *thread;            
             
    int run_depth;       /* Detect run_workqueue() recursion depth */             
} ____cacheline_aligned;             
             
/*             
* The externally visible workqueue abstraction is an array of            
* per-CPU workqueues:            
*/             
struct workqueue_struct            
{             
    struct cpu_workqueue_struct *cpu_wq;            
    struct list_head list;            
    const char *name;             
    int singlethread;            
    int freezeable;       /* Freeze threads during suspend */             
    int rt;            
#ifdef CONFIG_LOCKDEP            
    struct lockdep_map lockdep_map;            
#endif             
};

Work_struct表示将要提交的处理的工作。    

struct work_struct            
{             
    atomic_long_t data;             
#define WORK_STRUCT_PENDING0       /* T if work item pending execution */             
#define WORK_STRUCT_FLAG_MASK (3UL)            
#define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)            
    struct list_head entry;            
    work_func_t func;             
#ifdef CONFIG_LOCKDEP            
    struct lockdep_map lockdep_map;            
#endif             
};

上面三个数据结构的关系如下图所示    

wps_clip_image-32340    

介绍主要数据结构的目的并不是想要把工作队列具体的细节说明白,主要的目的是给大家一个总的架构的轮廓。具体的分析在下面展开。从上面的该模块主要数据结构的关系来看,主要需要分析如下几个问题:    

1. Workqueque是怎样创建的,包括event/0内核进程的创建    

2. Work_queue是如何提交到工作队列的    

3. Event/0内核进程如何处理提交到队列上的工作    

Workqueque的创建    

首先申请了workqueue_struct结构体内存,cpu_workqueue_struct结构体的内存。然后在init_cpu_workqueue函数中对cpu_workqueue_struct结构体进行初始化。同时调用create_workqueue_thread函数创建处理工作队列的内核进程。    

create_workqueue_thread中创建了如下的内核进程    

p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);    

最后调用start_workqueue_thread启动新创建的进程。    

struct workqueue_struct *__create_workqueue_key(const char *name,             
        int singlethread,            
        int freezeable,            
        int rt,            
        struct lock_class_key *key,            
        const char *lock_name)             
{             
    struct workqueue_struct *wq;            
    struct cpu_workqueue_struct *cwq;            
    int err =0, cpu;            
             
    wq = kzalloc(sizeof(*wq), GFP_KERNEL);            
    if (!wq)            
        return NULL;            
             
    wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);            
    if (!wq->cpu_wq)            
    {             
        kfree(wq);             
        return NULL;            
    }             
             
    wq->name = name;             
    lockdep_init_map(&wq->lockdep_map, lock_name, key,0);            
    wq->singlethread = singlethread;            
    wq->freezeable = freezeable;            
    wq->rt = rt;             
    INIT_LIST_HEAD(&wq->list);             
             
    if (singlethread)            
    {             
        cwq = init_cpu_workqueue(wq, singlethread_cpu);            
        err = create_workqueue_thread(cwq, singlethread_cpu);            
        start_workqueue_thread(cwq, -1);            
    }             
    else             
    {             
        cpu_maps_update_begin();            
        /*            
         * We must place this wq on list even if the code below fails.            
         * cpu_down(cpu) can remove cpu from cpu_populated_map before            
         * destroy_workqueue() takes the lock, in that case we leak            
         * cwq[cpu]->thread.            
         */             
        spin_lock(&workqueue_lock);            
        list_add(&wq->list, &workqueues);            
        spin_unlock(&workqueue_lock);            
        /*            
         * We must initialize cwqs for each possible cpu even if we            
         * are going to call destroy_workqueue() finally. Otherwise            
         * cpu_up() can hit the uninitialized cwq once we drop the            
         * lock.             
         */             
        for_each_possible_cpu(cpu)            
        {             
            cwq = init_cpu_workqueue(wq, cpu);            
            if (err || !cpu_online(cpu))            
                continue;            
            err = create_workqueue_thread(cwq, cpu);            
            start_workqueue_thread(cwq, cpu);            
        }             
        cpu_maps_update_done();             
    }             
             
    if (err)            
    {             
        destroy_workqueue(wq);             
        wq = NULL;             
    }             
    return wq;            
}             
EXPORT_SYMBOL_GPL(__create_workqueue_key);

向工作队列中添加工作    

Shedule_work 函数向工作队列中添加任务。这个接口比较简单,无非是一些队列操作,不再叙述。    

/**            
* schedule_work - put work task in global workqueue            
* @work: job to be done            
*             
* This puts a job in the kernel-global workqueue.            
*/             
int schedule_work(struct work_struct *work)             
{             
    return queue_work(keventd_wq, work);            
}             
EXPORT_SYMBOL(schedule_work);

工作队列内核进程的处理过程    

在创建工作队列的时候,我们创建了一个或者多个进程来处理挂到队列上的工作。这个内核进程的主要函数体为worker_thread,这个函数比较有意思的地方就是,自己降低的优先级,说明worker_thread调度的优先级比较低。在系统负载大大时候,采用工作队列执行的操作可能存在较大的延迟。    

就函数的执行流程来说是真心的简单,只是从队列中取出work,从队列中删除掉,清除掉pending标记,并执行work设置的回调函数。    

static int worker_thread(void *__cwq)            
{             
    struct cpu_workqueue_struct *cwq = __cwq;            
    DEFINE_WAIT(wait);             
             
    if (cwq->wq->freezeable)            
        set_freezable();             
             
    set_user_nice(current, -5);            
             
    for (;;)            
    {             
        prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);            
        if (!freezing(current) &&            
                !kthread_should_stop() &&            
                list_empty(&cwq->worklist))            
            schedule();             
        finish_wait(&cwq->more_work, &wait);            
             
        try_to_freeze();             
             
        if (kthread_should_stop())            
            break;            
             
        run_workqueue(cwq);             
    }             
             
    return 0;            
}

static void run_workqueue(struct cpu_workqueue_struct *cwq)            
{             
    spin_lock_irq(&cwq->lock);             
    cwq->run_depth++;             
    if (cwq->run_depth >3)            
    {             
        /* morton gets to eat his hat */             
        printk("%s: recursion depth exceeded: %d\n",            
               __func__, cwq->run_depth);            
        dump_stack();             
    }             
    while (!list_empty(&cwq->worklist))            
    {             
        struct work_struct *work = list_entry(cwq->worklist.next,            
                                             struct work_struct, entry);            
        work_func_t f = work->func;            
#ifdef CONFIG_LOCKDEP            
        /*            
         * It is permissible to free the struct work_struct            
         * from inside the function that is called from it,            
         * this we need to take into account for lockdep too.            
         * To avoid bogus "held lock freed" warnings as well            
         * as problems when looking into work->lockdep_map,            
         * make a copy and use that here.            
         */             
        struct lockdep_map lockdep_map = work->lockdep_map;            
#endif             
             
        cwq->current_work = work;            
        list_del_init(cwq->worklist.next);            
        spin_unlock_irq(&cwq->lock);            
             
        BUG_ON(get_wq_data(work) != cwq);            
        work_clear_pending(work);            
        lock_map_acquire(&cwq->wq->lockdep_map);            
        lock_map_acquire(&lockdep_map);            
        f(work);             
        lock_map_release(&lockdep_map);            
        lock_map_release(&cwq->wq->lockdep_map);            
             
        if (unlikely(in_atomic() || lockdep_depth(current) >0))            
        {             
            printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "             
                   "%s/0x%08x/%d\n",            
                   current->comm, preempt_count(),            
                   task_pid_nr(current));            
            printk(KERN_ERR "    last function: ");            
            print_symbol("%s\n", (unsigned long)f);            
            debug_show_held_locks(current);            
            dump_stack();             
        }             
             
        spin_lock_irq(&cwq->lock);            
        cwq->current_work = NULL;            
    }             
    cwq->run_depth--;             
    spin_unlock_irq(&cwq->lock);            
}             
 

0 0
原创粉丝点击