Flume-1.6.0部分源码分析续1

来源:互联网 发布:mac怎么删除双系统 编辑:程序博客网 时间:2024/06/17 01:28

5、SourceChannelSink之间是靠什么联系在一起的呢?

上述三者之间的联系主要是基于:Transaction类。Channel采用了Transaction(事务)机制来保证数据的完整性,这里的事务和数据库中的事务概念类似,但并不是完全一致,其语义可以参考下面这个图:

 source产生Event,通过“put”、“commit”操作将Event放到Channel

sink 通过“take”操作从Channel中取出Event,进行相应的处理。

6、以MemoryChannel为例来说明Channel是怎么发挥中间缓冲作用的。

6.1 首先看一下MemoryChannel中比较重要的成员变量:

// lock to guard queue, mainly needed to keep it locked down during resizes// it should never be held through a blocking operationprivate Object queueLock = new Object();//queue为Memory Channel中存放Event的地方,这里用了LinkedBlockingDeque来实现@GuardedBy(value = "queueLock")private LinkedBlockingDeque<Event> queue;//下面的两个信号量用来做同步操作,queueRemaining表示queue中的剩余空间,queueStored表示queue中的使用空间// invariant that tracks the amount of space remaining in the queue(with all uncommitted takeLists deducted)// we maintain the remaining permits = queue.remaining - takeList.size()// this allows local threads waiting for space in the queue to commit without denying access to the// shared lock to threads that would make more space on the queueprivate Semaphore queueRemaining;// used to make "reservations" to grab data from the queue.// by using this we can block for a while to get data without locking all other threads out// like we would if we tried to use a blocking call on queueprivate Semaphore queueStored;//下面几个变量为配置文件中Memory Channel的配置项// 一个事务中Event的最大数目private volatile Integer transCapacity;// 向queue中添加、移除Event的等待时间private volatile int keepAlive;// queue中,所有Event所能占用的最大空间private volatile int byteCapacity;private volatile int lastByteCapacity;// queue中,所有Event的header所能占用的最大空间占byteCapacity的比例private volatile int byteCapacityBufferPercentage;// 用于标示byteCapacity中剩余空间的信号量private Semaphore bytesRemaining;// 用于记录Memory Channel的一些指标,后面可以通过配置监控来观察Flume的运行情况private ChannelCounter channelCounter;

然后重点说下MemoryChannel里面的MemoryTransaction,它是Transaction类的子类,从其文档来看,一个Transaction的使用模式都是类似的:

<span style="font-size:18px;">Channel ch = ... Transaction tx = ch.getTransaction(); try {   tx.begin();   ...   // ch.put(event) or ch.take()   ...   tx.commit(); } catch (ChannelException ex) {   tx.rollback();   ... } finally {   tx.close(); }</span>

可以看到一个Transaction主要有、puttakecommitrollback这四个方法,我们在实现其子类时,主要也是实现着四个方法。

Flume官方为了方便开发者实现自己的Transaction,定义了BasicTransactionSemantics,这时开发者只需要继承这个辅助类,并且实现其相应的、doPutdoTakedoCommitdoRollback方法即可,MemoryChannel就是继承了这个辅助类。

<span style="font-size:18px;">private class MemoryTransaction extends BasicTransactionSemantics {    //和MemoryChannel一样,内部使用LinkedBlockingDeque来保存没有commit的Event    private LinkedBlockingDeque<Event> takeList;    private LinkedBlockingDeque<Event> putList;    private final ChannelCounter channelCounter;    //下面两个变量用来表示put的Event的大小、take的Event的大小    private int putByteCounter = 0;    private int takeByteCounter = 0;     public MemoryTransaction(int transCapacity, ChannelCounter counter) {      //用transCapacity来初始化put、take的队列      putList = new LinkedBlockingDeque<Event>(transCapacity);      takeList = new LinkedBlockingDeque<Event>(transCapacity);       channelCounter = counter;    }     @Override    protected void doPut(Event event) throws InterruptedException {      //doPut操作,先判断putList中是否还有剩余空间,有则把Event插入到该队列中,同时更新putByteCounter      //没有剩余空间的话,直接报ChannelException      channelCounter.incrementEventPutAttemptCount();      int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);       if (!putList.offer(event)) {        throw new ChannelException(          "Put queue for MemoryTransaction of capacity " +            putList.size() + " full, consider committing more frequently, " +            "increasing capacity or increasing thread count");      }      putByteCounter += eventByteSize;    }     @Override    protected Event doTake() throws InterruptedException {      //doTake操作,首先判断takeList中是否还有剩余空间      channelCounter.incrementEventTakeAttemptCount();      if(takeList.remainingCapacity() == 0) {        throw new ChannelException("Take list for MemoryTransaction, capacity " +            takeList.size() + " full, consider committing more frequently, " +            "increasing capacity, or increasing thread count");      }      //然后判断,该MemoryChannel中的queue中是否还有空间,这里通过信号量来判断      if(!queueStored.tryAcquire(keepAlive, TimeUnit.SECONDS)) {        return null;      }      Event event;      //从MemoryChannel中的queue中取出一个event      synchronized(queueLock) {        event = queue.poll();      }      Preconditions.checkNotNull(event, "Queue.poll returned NULL despite semaphore " +          "signalling existence of entry");      //放到takeList中,然后更新takeByteCounter变量      takeList.put(event);       int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);      takeByteCounter += eventByteSize;       return event;    }     @Override    protected void doCommit() throws InterruptedException {      //该对应一个事务的提交      //首先判断putList与takeList的相对大小      int remainingChange = takeList.size() - putList.size();      //如果takeList小,说明向该MemoryChannel放的数据比取的数据要多,所以需要判断该MemoryChannel是否有空间来放      if(remainingChange < 0) {        // 1. 首先通过信号量来判断是否还有剩余空间        if(!bytesRemaining.tryAcquire(putByteCounter, keepAlive,          TimeUnit.SECONDS)) {          throw new ChannelException("Cannot commit transaction. Byte capacity " +            "allocated to store event body " + byteCapacity * byteCapacitySlotSize +            "reached. Please increase heap space/byte capacity allocated to " +            "the channel as the sinks may not be keeping up with the sources");        }        // 2. 然后判断,在给定的keepAlive时间内,能否获取到充足的queue空间        if(!queueRemaining.tryAcquire(-remainingChange, keepAlive, TimeUnit.SECONDS)) {          bytesRemaining.release(putByteCounter);          throw new ChannelFullException("Space for commit to queue couldn't be acquired." +              " Sinks are likely not keeping up with sources, or the buffer size is too tight");        }      }      int puts = putList.size();      int takes = takeList.size();      //如果上面的两个判断都过了,那么把putList中的Event放到该MemoryChannel中的queue中。      synchronized(queueLock) {        if(puts > 0 ) {          while(!putList.isEmpty()) {            if(!queue.offer(putList.removeFirst())) {              throw new RuntimeException("Queue add failed, this shouldn't be able to happen");            }          }        }        //清空本次事务中用到的putList与takeList,释放资源        putList.clear();        takeList.clear();      }      //更新控制queue大小的信号量bytesRemaining,因为把takeList清空了,所以直接把takeByteCounter加到bytesRemaining中。      bytesRemaining.release(takeByteCounter);      takeByteCounter = 0;      putByteCounter = 0;      //因为把putList中的Event放到了MemoryChannel中的queue,所以把puts加到queueStored中去。      queueStored.release(puts);      //如果takeList比putList大,说明该MemoryChannel中queue的数量应该是减少了,所以把(takeList-putList)的差值加到信号量queueRemaining      if(remainingChange > 0) {        queueRemaining.release(remainingChange);      }      if (puts > 0) {        channelCounter.addToEventPutSuccessCount(puts);      }      if (takes > 0) {        channelCounter.addToEventTakeSuccessCount(takes);      }       channelCounter.setChannelSize(queue.size());    }     @Override    protected void doRollback() {      //当一个事务失败时,会进行回滚,即调用本方法      //首先把takeList中的Event放回到MemoryChannel中的queue中。      int takes = takeList.size();      synchronized(queueLock) {        Preconditions.checkState(queue.remainingCapacity() >= takeList.size(), "Not enough space in memory channel " +            "queue to rollback takes. This should never happen, please report");        while(!takeList.isEmpty()) {          queue.addFirst(takeList.removeLast());        }        //然后清空putList        putList.clear();      }      //因为清空了putList,所以需要把putList所占用的空间大小添加到bytesRemaining中      bytesRemaining.release(putByteCounter);      putByteCounter = 0;      takeByteCounter = 0;      //因为把takeList中的Event回退到queue中去了,所以需要把takeList的大小添加到queueStored中      queueStored.release(takes);      channelCounter.setChannelSize(queue.size());    }   }</span>

MemoryChannel的逻辑相对简单,主要是通过MemoryTransaction中的putListtakeListMemoryChannel中的queue打交道,这里的queue相当于持久化层,只不过放到了内存中,如果是FileChannel的话,会把这个queue放到本地文件中。下面表示了Event在一个使用了MemoryChannelagent中数据流向是:

source ---> putList ---> queue ---> takeList ---> sink

0 0