深度学习FPGA实现基础知识17(图像处理卷积运算 矩阵卷积)

来源:互联网 发布:全民枪战刷枪软件 编辑:程序博客网 时间:2024/06/15 20:38

需求说明:深度学习FPGA实现知识储备

内容:第一部分:矩阵的卷积运算详细过程

          第二部分:图像处理之卷积理解

          第三部分:矩阵卷积转换为矩阵相乘

整理来自:时间的诗


第一部分:矩阵的卷积运算详细过程

来自:http://blog.csdn.net/frankyzhangc/article/details/6990782

一个矩阵与另一个矩阵的卷积运算大部分运用在图像处理上,例如用一个模板去对一幅图像进行卷积。

把模板(n*n)放在矩阵上(中心对准要处理的元素),用模板的每个元素去乘矩阵中的的元素,累加和等于这个元素例如例子中的第二行第二个元素16= 1*2+1*1+1*3+1*1+1*2+1*1+1*2+1*1+1*2+1*1+1*3的计算,依次计算每个元素的值,如果矩阵的中心在边缘就要将原矩阵进行扩展,例如补0,或者直接规定模板的中心距离边缘(n-1)/2个单位以上。

以下举一个简单的例子,并用Matlab来观察

相关MATALB代码

a=[2 1 3 1;1 2 1 2;2 1 3 2;1 3 1 2];
b=[1 1 1;1 1 1;1 1 1];
c=conv2(a,b,'same');
d=conv2(a,b,'full');
fprintf('\na = \n');
disp(a);
fprintf('\nb = \n');
disp(b);
fprintf('\nc = \n');
disp(c);
fprintf('\nd = \n');
disp(d);


MATALB仿真结果

a = 
     2     1     3     1
     1     2     1     2
     2     1     3     2
     1     3     1     2

b = 
     1     1     1
     1     1     1
     1     1     1

c = 
     6    10    10     7
     9    16    16    12
    10    15    17    11
     7    11    12     8

d = 
     2     3     6     5     4     1
     3     6    10    10     7     3
     5     9    16    16    12     5
     4    10    15    17    11     6
     3     7    11    12     8     4
     1     4     5     6     3     2

卷积的计算步骤:
(1)    卷积核绕自己的核心元素顺时针旋转180度(这个千万不要忘了)
(2)    移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
(3)    在旋转后的卷积核中,将输入图像的像素值作为权重相乘
(4)    第三步各结果的和做为该输入像素对应的输出像素

请看用水平和垂直差分算子对矩阵处理后的结果,然后细细体会

a = 
     2     1     3     1
     1     2     1     2
     2     1     3     2
     1     3     1     2
b = 
    -1    -1    -1
     0     0     0
     1     1     1
e = 
    -1     0     1
    -1     0     1
    -1     0     1

c = 
    -3    -4    -5    -3
     0     0    -1    -1
    -1    -1    -1     0
     3     6     6     5

d = 
    -3    -1     0     4
    -4    -2    -1     7
    -6    -1     0     5
    -4    -1     0     4

第二部分:图像处理之卷积理解

来自:http://blog.csdn.net/jia20003/article/details/7038938


图像处理之理解卷积

 

一:什么是卷积

离散卷积的数学公式可以表示为如下形式:

f(x) =  - 其中C(k)代表卷积操作数,g(i)代表样本数据, f(x)代表输出结果。

举例如下:

假设g(i)是一个一维的函数,而且代表的样本数为G = [1,2,3,4,5,6,7,8,9]

假设C(k)是一个一维的卷积操作数, 操作数为C=[-1,0,1]

则输出结果f(x)可以表示为 F=[1,2,2,2,2,2,2,2,1]  //边界数据未处理

 

以上只是一维的情况下,当对一幅二维数字图像加以卷积时,其数学意义可以解释如下:

源图像是作为输入源数据,处理以后要的图像是卷积输出结果,卷积操作数作为Filter

在XY两个方向上对源图像的每个像素点实施卷积操作。如图所示:

 

粉红色的方格每次在X/Y前进一个像素方格,就会产生一个新的输出像素,图中深蓝色的代

表要输出的像素方格,走完全部的像素方格,就得到了所有输出像素。

 

图中,粉红色的矩阵表示卷积操作数矩阵,黑色表示源图像– 每个方格代表一个像素点。

 

二:卷积在数字图像处理中应用

一副数字图像可以看作一个二维空间的离散函数可以表示为f(x, y), 假设有对于二维卷积操

作函数C(u, v) ,则会产生输出图像g(x, y) = f(x, y) *C(u,v), 利用卷积可以实现对图像模糊处理,边缘检测,产生轧花效果的图像。

 

一个简单的数字图像卷积处理流程可以如下:

1.      读取源图像像素

2.      应用卷积操作数矩阵产生目标图像

3.      对目标图像进行归一化处理

4.      处理边界像素

三:一个纯Java的卷积模糊图像效果

 

四:关键代码解释

 

完成对像素点RGB颜色的卷积计算代码如下:

// red color

out3DData[row][col][1] =in3DData[row][col][1] +

       in3DData[row-1][col][1] +

       in3DData[row+1][col][1] +

       in3DData[row][col-1][1] +

       in3DData[row-1][col-1][1] +

       in3DData[row+1][col-1][1] +

       in3DData[row][col+1][1] +

       in3DData[row-1][col+1][1] +

       in3DData[row+1][col+1][1];

             

// green color

out3DData[row][col][2] =in3DData[row][col][2] +

       in3DData[row-1][col][2] +

       in3DData[row+1][col][2] +

       in3DData[row][col-1][2] +

       in3DData[row-1][col-1][2] +

       in3DData[row+1][col-1][2] +

       in3DData[row][col+1][2] +

       in3DData[row-1][col+1][2] +

       in3DData[row+1][col+1][2];

             

// blue color

out3DData[row][col][3] =in3DData[row][col][3] +

       in3DData[row-1][col][3] +

       in3DData[row+1][col][3] +

       in3DData[row][col-1][3] +

       in3DData[row-1][col-1][3] +

       in3DData[row+1][col-1][3] +

       in3DData[row][col+1][3] +

       in3DData[row-1][col+1][3] +

       in3DData[row+1][col+1][3];

 

计算归一化因子以及对卷积结果归一化处理的代码如下:

// find the peak data frominput and output pixel data.

int inpeak = 0;

int outPeak = 0;

for(int row=0; row<srcH; row++) {

    for(int col=0; col<srcW; col++) {

       if(inpeak < in3DData[row][col][1]) {

           inpeak = in3DData[row][col][1];

       }

             

       if(inpeak < in3DData[row][col][2]) {

           inpeak = in3DData[row][col][2];

       }

             

       if(inpeak < in3DData[row][col][3]) {

           inpeak = in3DData[row][col][3];

       }

             

       if(outPeak < out3DData[row][col][1]) {

           outPeak = out3DData[row][col][1];

       }

       if(outPeak < out3DData[row][col][2]) {

           outPeak = out3DData[row][col][2];

       }

       if(outPeak < out3DData[row][col][3]) {

           outPeak = out3DData[row][col][3];

       }

    }

}

 

// normalization

double outputScale = ((double) inpeak) / ((double)outPeak);

for(int row=0; row<srcH; row++) {

    for(int col=0; col<srcW; col++) {

out3DData[row][col][1] = (int)(outputScale * out3DData[row][col][1]);

out3DData[row][col][2] = (int)(outputScale * out3DData[row][col][2]);

out3DData[row][col][3] = (int)(outputScale * out3DData[row][col][3]);

    }

}

 

五:本文没有提及的内容 –边界像素处理

没有处理边缘像素,对边缘像素的处理,有两个可以参考的方法

其一是直接填充法– 超出边界部分的以边界像素填充。

其二是线性插值法– 超出边界部分的以 i/row的像素填充。


第三部分:矩阵卷积转换为矩阵相乘

来自:http://blog.csdn.net/anan1205/article/details/12313593

  两个矩阵卷积转化为矩阵相乘形式——Matlab应用(这里考虑二维矩阵,在图像中对应)两个图像模糊(边缘)操作,假设矩阵A、B,A代表源图像,B代表卷积模板,那么B的取值决定最后运算的结果。

       Matlab中的应用函数——conv2(二维卷积,一维对应conv)

       函数给出的公式定义为:

    

        同一维数据卷积一样,它的实质在于将卷积模板图像翻转(旋转180),这里等同于一维信号的翻转,然后将卷积模板依次从上到下、从左到右滑动,计算在模板与原始图像交集元素的乘积和,该和就作为卷积以后的数值。

        为了验证后续矩阵卷积转化为矩阵相乘,这里给出的conv2的实例描述: 

        假设矩阵A(4*3)、B(2*3)如下:

               

       首先,B需要旋转180,

      命令旋转2次90即可:

      B = rot90(rot90(B));或者B = rot90(h,2);  结果为:

      

      其次:命令conv2函数:

      C = conv2(A,B,‘shape’),该函数的具体操作图示:

                            

       依次计算直至结束,结果数据为:

    

         shape的取值有三种,full代表返回卷积以后的全部数据,size为(mA+mB-1,nA+nB-1)的数据;same代表返回卷积以后的原图size (mA,nA)的部分数据;valid返回size为(mA-mB+1,nA-nB+1)的数据,指的是模板元素全部参加运算的结果数据,即源图像和模板的交集为模板。

        

         矩阵卷积转化为矩阵相乘,网上也有很多方法,通俗化表示为:

A×B = B1*A1;

         需要针对原始数据与模板数据做变换,变换过程如下:

                        

       首先进行周期延拓,补零:

       M = mA+mB-1 = 5;  N = nA+nB-1 = 5,对应卷积以后full数据大小。

      那么初次换换的A和B为:

   

        其次对A1和B1分别进行变换

        转化B1——针对B1以及转换矩阵方法为:

        


          将B1中的每一行向量依次按照B转化为一个方形矩阵Ba~Be,然后针对于每一个方形矩阵按照B矩阵组合成一个新的矩阵B1。B1矩阵的大小为((mA+mB-1)*(nA+nB-1),(mA+mB-1)*(nA+nB-1))。

          转化A1——堆叠向量式

         将上个步骤转换的A1按照行向量顺寻依次转化为一个列向量,那么列向量的大小为((mA+mB-1)*(nA+nB-1),1)大小。

        

        针对实例:具体代码为:

      周期延拓:

       转化A——>A1

[plain] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. [m1,n1] = size(A);  [m2,n2] = size(B);  
  2. m=m1+m2-1;n=n1+n2-1;  
  3. AA = padarray(A,[m2-1,n2-1],'post');%%%补零  
  4. BB = padarray(B,[m1-1,n1-1],'post');%%%补零  
  5. AA =AA';  
  6. A1 = AA(:);%%%%  

     转化B——>B1

[plain] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. B2(1,:) = BB(1,:);  
  2. for i =2:m  
  3.     B2(i,:) = BB(m-i+2,:);  
  4. end %%%矩阵a ~ e的重新赋值  
  5.   
  6. B4 = zeros(n,n);%%%%%%%每一行转化的方阵  
  7. B1 = zeros(m*n,m*n);%%%%%最后的矩阵  
  8. for i =1:m%%%%%%%%几维向量  
  9.     B = B2(i,:);  
  10.     if sum(sum(abs(B))==0)  
  11.         B4 = zeros(n,n);  
  12.     else  
  13.        for j = 1:n%%%%%%%元素  
  14.            for k =0:n-1%%%%%%%%位置(搞定一行向量转化为方阵的形式)  
  15.                t = mod(j+k,n);  
  16.                if t==0  
  17.                   t = n;  
  18.                end  %%%end if  
  19.                B4(t,k+1) = B(j);  
  20.            end %%%end for  
  21.        end  %%%end for  
  22.        for  k =0:m-1%%%%%%%%每一个转换矩阵在大矩阵中的位置编号(搞定小方阵在大阵中的位置转化为大方阵的形式)  
  23.             t = mod(i+k,m);  
  24.             if t==0  
  25.                 t = m;  
  26.             end  %%%end if  
  27.             B1(k*n+1:(k+1)*n,(t-1)*n+1:t*n) = B4;  
  28.        end  %%%end for  
  29.    end %%%end if else   
  30. end  %%%end for      

     结果数据转化:

[plain] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. Result = B1*A1;  
  2. Result = reshape(Result,n,m);  
  3. Result = Result';  

    得到的结果等同于conv2的数据结果:    


   利用matlab接口更快的实现方法:

   还是以5 * 5的原始数据与3*3的卷积核为例子:

   代码如下:
[html] view plain copy
 在CODE上查看代码片派生到我的代码片
  1. dd_data = [1,2,4,5,6;6,8,9,1,3;6,8,9,2,4;7,3,5,7,5;1,5,8,9,3]; % 5 *  5  
  2. f_k = [3,4,5;6,7,8;3,2,1]; % 3 * 3  
  3. dd_data_f_k = conv2(dd_data,f_k,'full'); % matlab 函数接口  
  4. dd_data1 = padarray(dd_data,[2 2],'both'); % 扩充原始数据  
  5. v_dd_data = im2col(dd_data1,[3 3]);% 块数据向量化  
  6. f_k1 = f_k(:);  
  7. f_k1 = f_k1(end : -1 :1);  
  8. f_k1 = f_k1'; % 卷积核的表示  
  9. dd_data_f_k1 = f_k1 * v_dd_data; % 卷积转化为相乘  
  10. dd_data_f_k1 = reshape(dd_data_f_k1,[7 7]); % 转化为结果数据  
1 0
原创粉丝点击