Java源代码分析之Vector数组

来源:互联网 发布:100m阿里云服务器租用 编辑:程序博客网 时间:2024/05/17 07:29

Vector源码分析

  • 每个Java程序员应该的特性

    • 可变长数组(grow or shrink
    • 能够使用索引获取值(accessed using an integer index
    • 多线程环境下线程安全
  • 类图

package java.util;import java.util.function.Consumer;import java.util.function.Predicate;import java.util.function.UnaryOperator;/*vector 通过capacity(容量)和capacityIncrement(增量)两个属性来最化管理存储, capacity 一般都比 size 大。 当知道需要插入大量元素时,可以提前分配给vector较大空间,减少分配内存次数, 从而减少不必要的开销。 此类的iterator和listIterator方法返回的迭代器是快速失败的:如果该向量在任何时间从结构上修改创建迭代器后,以任何方式,除了通过迭代器自身的remove或add方法,迭代器都将抛出ConcurrentModificationException。因此,在并发的修改,迭代器很快就会完全失败,而不是在将来不确定的时间任意冒险,不确定性的行为。通过elements方法返回的Enumeration不是快速失败的。注意,迭代器的快速失败行为不能得到保证,因为它是,一般来说,不可能作出任何硬性保证不同步并发修改的存在。快速失败迭代器抛出ConcurrentModificationException尽最大努力的基础上。因此,这将是错误的编写一个程序,依赖于此异常为它的正确性:迭代器的快速失败行为应该仅用于检测bug。从Java 2平台v1.2,这个类是改进来实现List接口,使它成为Java Collections Framework的成员。不同的是新的集合实现不同,Vector是同步的。如果不需要线程安全执行,建议代替矢量的使用的ArrayList。 */public class Vector<E>    extends AbstractList<E>    implements List<E>, RandomAccess, Cloneable, java.io.Serializable{    // 存放数据的数组    protected Object[] elementData;    // 实际元素个数    protected int elementCount;    // 容量增量,每次扩容增加的大小,如果 capacityIncrement小雨或等于0,那么容量会每次翻倍double的增长    protected int capacityIncrement;    private static final long serialVersionUID = -2767605614048989439L;// 数组的初始化,增量的初始化,容量小于0会报异常    public Vector(int initialCapacity, int capacityIncrement) {        super();        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal Capacity: "+                                               initialCapacity);        this.elementData = new Object[initialCapacity];        this.capacityIncrement = capacityIncrement;    }    // 指定容量,并且增量为0,每次扩容方法为翻倍    public Vector(int initialCapacity) {        this(initialCapacity, 0);    }    //默认构造方法,默认容量大小为10    public Vector() {        this(10);    }    // 根据指定集合创建vector    // 另外vector的顺序由集合Collection的iterator遍历的顺序来保证    public Vector(Collection<? extends E> c) {        elementData = c.toArray();  // 根据集合生成数组,数组是reallocate的,不存在refer关系        elementCount = elementData.length;        //下面一句话简单理解就是 toArray()返回的并不一定是Object[]数组(实际类型)        // 具体请看 我的博客文章 http://blog.csdn.net/huzhigenlaohu/article/details/51702737        // c.toArray might (incorrectly) not return Object[] (see 6260652)        if (elementData.getClass() != Object[].class)            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);    }    /**     * anArray 为空会报空指针异常 , anArray的长度不能容纳elementData所有元素汇会报索引越界异常     * 另外 c.toArray  not return Object[]时候 报 ArrayStoreException     * 请看 http://blog.csdn.net/huzhigenlaohu/article/details/51702737     */    public synchronized void copyInto(Object[] anArray) {        System.arraycopy(elementData, 0, anArray, 0, elementCount);    }    // 去掉Vector 数组后面未存入数据的部分,使得Capacity(length) = elementCount    public synchronized void trimToSize() {        //这个 字段含义为 vector 结构(一般指的是大小)被修改的次数        modCount++;        int oldCapacity = elementData.length;        if (elementCount < oldCapacity) {            elementData = Arrays.copyOf(elementData, elementCount);        }    }//扩容函数(对外暴露的函数,实现看grow)    public synchronized void ensureCapacity(int minCapacity) {        if (minCapacity > 0) {            modCount++;            ensureCapacityHelper(minCapacity);        }    }    private void ensureCapacityHelper(int minCapacity) {        // overflow-conscious code        if (minCapacity - elementData.length > 0)            grow(minCapacity);    }    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;     //这个才是看的重点,上面两个函数可以忽略掉。。。额,说错了,不是忽略掉而是可以不看    private void grow(int minCapacity) {        // overflow-conscious code        int oldCapacity = elementData.length;        // 如果增量大于0那么是的容量+Increment,如果小于等于0,那么容量翻倍        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?                                         capacityIncrement : oldCapacity);        // 如果根据扩容方法后容量还是小于minCapacity,那么设置扩容后大小为minCapacity        if (newCapacity - minCapacity < 0)            newCapacity = minCapacity;        //溢出,大于最大允许的容量        if (newCapacity - MAX_ARRAY_SIZE > 0)            newCapacity = hugeCapacity(minCapacity);        //根据容量重新reallocate内存,得到一个新数组        elementData = Arrays.copyOf(elementData, newCapacity);    }// 容量超过最大值处理方式    private static int hugeCapacity(int minCapacity) {        if (minCapacity < 0) // overflow            throw new OutOfMemoryError();        return (minCapacity > MAX_ARRAY_SIZE) ?            Integer.MAX_VALUE :            MAX_ARRAY_SIZE;    }    // 设置vector 的size大小,注意并不是length,当设置的newsize大于当前的size那么考虑是否要扩容,如果小于,那么把多余的部分全部设置为null    public synchronized void setSize(int newSize) {        modCount++;        if (newSize > elementCount) {            ensureCapacityHelper(newSize);        } else {            for (int i = newSize ; i < elementCount ; i++) {                elementData[i] = null;            }        }        elementCount = newSize;    }    //容量    public synchronized int capacity() {        return elementData.length;    }    //元素个数    public synchronized int size() {        return elementCount;    }    //实际存储的元素是否为空    public synchronized boolean isEmpty() {        return elementCount == 0;    }    //根据索引生成 对应元素的枚举 ,索引为0 为枚举第一个元素,索引为1为枚举第二个元素,and so on    public Enumeration<E> elements() {        return new Enumeration<E>() {            int count = 0;            public boolean hasMoreElements() {                return count < elementCount;            }//可以看到此方法会抛出异常,在调用的时候务必先调用hasMoreElements进行判断            public E nextElement() {                //提供vector对象锁,保持同步                synchronized (Vector.this) {                    if (count < elementCount) {                        return elementData(count++);                    }                }                throw new NoSuchElementException("Vector Enumeration");            }        };    }    //判别是否存在对象 o    public boolean contains(Object o) {        return indexOf(o, 0) >= 0;    }    //返回第一个出现o的位置索引    public int indexOf(Object o) {        return indexOf(o, 0);    }//主要是判断o是否为空,其他都是顺序查找,很简单O(n)    public synchronized int indexOf(Object o, int index) {        if (o == null) {            for (int i = index ; i < elementCount ; i++)                if (elementData[i]==null)                    return i;        } else {            for (int i = index ; i < elementCount ; i++)                if (o.equals(elementData[i]))                    return i;        }        return -1;    }//从数组后端开始查找起,出现的第一个元素    public synchronized int lastIndexOf(Object o) {        return lastIndexOf(o, elementCount-1);    }//主要是判断o是否为空,其他都是顺序查找,很简单O(n)    public synchronized int lastIndexOf(Object o, int index) {        if (index >= elementCount)            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);        if (o == null) {            for (int i = index; i >= 0; i--)                if (elementData[i]==null)                    return i;        } else {            for (int i = index; i >= 0; i--)                if (o.equals(elementData[i]))                    return i;        }        return -1;    }    //方法等同于List接口的get(i)方法说    public synchronized E elementAt(int index) {        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);        }        return elementData(index);    }    public synchronized E firstElement() {        if (elementCount == 0) {            throw new NoSuchElementException();        }        return elementData(0);    }    public synchronized E lastElement() {        if (elementCount == 0) {            throw new NoSuchElementException();        }        return elementData(elementCount - 1);    }    public synchronized void setElementAt(E obj, int index) {        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " +                                                     elementCount);        }        elementData[index] = obj;    }    public synchronized void removeElementAt(int index) {        modCount++;        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " +                                                     elementCount);        }        else if (index < 0) {            throw new ArrayIndexOutOfBoundsException(index);        }        int j = elementCount - index - 1;        if (j > 0) {            System.arraycopy(elementData, index + 1, elementData, index, j);        }        elementCount--;        elementData[elementCount] = null; /* to let gc do its work */    }    public synchronized void insertElementAt(E obj, int index) {        modCount++;        if (index > elementCount) {            throw new ArrayIndexOutOfBoundsException(index                                                     + " > " + elementCount);        }        ensureCapacityHelper(elementCount + 1);        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);        elementData[index] = obj;        elementCount++;    }    public synchronized void addElement(E obj) {        modCount++;        ensureCapacityHelper(elementCount + 1);        elementData[elementCount++] = obj;    }    //删除从数组左边起第一个与obj相等的元素    public synchronized boolean removeElement(Object obj) {        modCount++;        int i = indexOf(obj);        if (i >= 0) {            removeElementAt(i);            return true;        }        return false;    }    //删除所有元素    public synchronized void removeAllElements() {        modCount++;        // Let gc do its work        for (int i = 0; i < elementCount; i++)            elementData[i] = null; //gc垃圾回收        elementCount = 0;    }    // clone克隆Vector,重新生成的数组与原来的数组属于不同引用,重新分配内存    public synchronized Object clone() {        try {            @SuppressWarnings("unchecked")                Vector<E> v = (Vector<E>) super.clone();            v.elementData = Arrays.copyOf(elementData, elementCount);            v.modCount = 0;            return v;        } catch (CloneNotSupportedException e) {            // this shouldn't happen, since we are Cloneable            throw new InternalError(e);        }    }    public synchronized Object[] toArray() {        return Arrays.copyOf(elementData, elementCount);    }    @SuppressWarnings("unchecked")    public synchronized <T> T[] toArray(T[] a) {//泛型指定生成的数组的类型        if (a.length < elementCount)            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());        System.arraycopy(elementData, 0, a, 0, elementCount);        if (a.length > elementCount)            a[elementCount] = null;        return a;    }//没同步,也没判断会不会抛出异常,为什么会存在呢?因为这个方法外部不能调用,它由其他内部(public)同步方法调用,保证线程安全    @SuppressWarnings("unchecked")    E elementData(int index) {        return (E) elementData[index];    }    public synchronized E get(int index) {        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        return elementData(index);    }//返回的是旧值    public synchronized E set(int index, E element) {        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        E oldValue = elementData(index);        elementData[index] = element;        return oldValue;    }    public synchronized boolean add(E e) {        modCount++;        ensureCapacityHelper(elementCount + 1);        elementData[elementCount++] = e;        return true;    }    public boolean remove(Object o) {        return removeElement(o);    }    public void add(int index, E element) {        insertElementAt(element, index);    }//返回被移除的对象    public synchronized E remove(int index) {        modCount++;        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        E oldValue = elementData(index);        int numMoved = elementCount - index - 1;        if (numMoved > 0)            System.arraycopy(elementData, index+1, elementData, index,                             numMoved);        elementData[--elementCount] = null; // Let gc do its work        return oldValue;    }//清空    public void clear() {        removeAllElements();    }    // 批量操作,判断vector中是否包含集合    // 特别注意:判断集合集合中每个元素是否都存在vector中,并没有顺序可言,单独判断,复杂度为O(m*n)    public synchronized boolean containsAll(Collection<?> c) {        return super.containsAll(c);        // 父类方法AbstractCollection        /*        public boolean containsAll(Collection<?> c) {        for (Object e : c)            if (!contains(e))                return false;            return true;       }       */    }    //集合到vector中,会抛出空指针异常    //特别注意:当正在进行此操作的时候,集合C又被另外一个线程修改,那么得到的vector是不确定的    public synchronized boolean addAll(Collection<? extends E> c) {        modCount++;        Object[] a = c.toArray();        int numNew = a.length;        ensureCapacityHelper(elementCount + numNew);        System.arraycopy(a, 0, elementData, elementCount, numNew);        elementCount += numNew;        return numNew != 0;    }   // 删除指定集合中切存在于vector中的元素    // 遍历vector中每个元素,判断是否存在于collection中,存在则删除,复杂度为O(M*n)    public synchronized boolean removeAll(Collection<?> c) {        return super.removeAll(c);    }   // 与前面一个函数功能相反,保留存在于Collection中的vector的元素    public synchronized boolean retainAll(Collection<?> c) {        return super.retainAll(c);    }   //指定索引,插入集合    public synchronized boolean addAll(int index, Collection<? extends E> c) {        modCount++;        if (index < 0 || index > elementCount)            throw new ArrayIndexOutOfBoundsException(index);        Object[] a = c.toArray();        int numNew = a.length;        ensureCapacityHelper(elementCount + numNew);        int numMoved = elementCount - index;        if (numMoved > 0)            System.arraycopy(elementData, index, elementData, index + numNew,                             numMoved);        System.arraycopy(a, 0, elementData, index, numNew);        elementCount += numNew;        return numNew != 0;    }    // 顺序、值、大小都要相等,使用父类AbstractList方法实现,顺序由listIterator()保证    public synchronized boolean equals(Object o) {        return super.equals(o);    }    public synchronized int hashCode() {        return super.hashCode();    }    public synchronized String toString() {        return super.toString();    }    //AbstractCollection方法/*public String toString() {        Iterator<E> it = iterator();        if (! it.hasNext())            return "[]";        StringBuilder sb = new StringBuilder();        sb.append('[');        for (;;) {            E e = it.next();            sb.append(e == this ? "(this Collection)" : e);            if (! it.hasNext())                return sb.append(']').toString();            sb.append(',').append(' ');        }    }*/    // 根据指定索引,返回子集合    //特别注意: 返回的子集合还是依赖于此vector的,并不是重新分配内存的    //对子集合的一切操作将会影响vector的变化,比如对子集合的排序(这个应用的非常广)、清空子集合等都会影响vector元素变化,但是与此同时也要考虑到多线程的不确定性    //eg:list.subList(from, to).clear();清空    //由于使用了Collections.synchronizedList进行同步处理(对象锁为当前vector对象),因此对vector的操作和对子集合的操作是同步处理的    public synchronized List<E> subList(int fromIndex, int toIndex) {        return Collections.synchronizedList(super.subList(fromIndex, toIndex),                                            this);    }   //删除指定范围子集合    protected synchronized void removeRange(int fromIndex, int toIndex) {        modCount++;        int numMoved = elementCount - toIndex;        System.arraycopy(elementData, toIndex, elementData, fromIndex,                         numMoved);        // Let gc do its work        int newElementCount = elementCount - (toIndex-fromIndex);        while (elementCount != newElementCount)            elementData[--elementCount] = null;    }    //序列化    private void writeObject(java.io.ObjectOutputStream s)            throws java.io.IOException {        final java.io.ObjectOutputStream.PutField fields = s.putFields();        final Object[] data;        synchronized (this) {            fields.put("capacityIncrement", capacityIncrement);            fields.put("elementCount", elementCount);            data = elementData.clone();        }        fields.put("elementData", data);        s.writeFields();    }    // 返回指定游标的列表迭代器,此迭代器ListIterator可以向前向后迭代,比普通iterator()方法强大Itr,推荐使用    public synchronized ListIterator<E> listIterator(int index) {        if (index < 0 || index > elementCount)            throw new IndexOutOfBoundsException("Index: "+index);        return new ListItr(index);    }    //同上一个方法,默认游标位置为起始位置0    public synchronized ListIterator<E> listIterator() {        return new ListItr(0);    }    //返回一个迭代器    public synchronized Iterator<E> iterator() {        return new Itr();    }    /**     * An optimized version of AbstractList.Itr     */     //迭代器默认实现,会出现fail-fast机制    private class Itr implements Iterator<E> {        int cursor;       // index of next element to return        int lastRet = -1; // index of last element returned; -1 if no such        int expectedModCount = modCount;        public boolean hasNext() {            // Racy but within spec, since modifications are checked            // within or after synchronization in next/previous            return cursor != elementCount;        }        public E next() {            synchronized (Vector.this) {                checkForComodification();//检查在迭代期间,检查vector是否存在结构修改                int i = cursor;                if (i >= elementCount)                    throw new NoSuchElementException();                cursor = i + 1;                return elementData(lastRet = i);            }        }        public void remove() {            if (lastRet == -1)                throw new IllegalStateException();            synchronized (Vector.this) {                checkForComodification();                Vector.this.remove(lastRet);                expectedModCount = modCount;            }            cursor = lastRet;            lastRet = -1;        }        @Override        public void forEachRemaining(Consumer<? super E> action) {            Objects.requireNonNull(action);            synchronized (Vector.this) {                final int size = elementCount;                int i = cursor;                if (i >= size) {                    return;                }        @SuppressWarnings("unchecked")                final E[] elementData = (E[]) Vector.this.elementData;                if (i >= elementData.length) {                    throw new ConcurrentModificationException();                }                while (i != size && modCount == expectedModCount) {                    action.accept(elementData[i++]);                }                // update once at end of iteration to reduce heap write traffic                cursor = i;                lastRet = i - 1;                checkForComodification();            }        }        final void checkForComodification() {            if (modCount != expectedModCount)                throw new ConcurrentModificationException();        }    }    //列表迭代器,可以向前向后遍历    final class ListItr extends Itr implements ListIterator<E> {        ListItr(int index) {            super();            cursor = index;        }        public boolean hasPrevious() {            return cursor != 0;        }        public int nextIndex() {            return cursor;        }        public int previousIndex() {            return cursor - 1;        }        public E previous() {            synchronized (Vector.this) {                checkForComodification();                int i = cursor - 1;                if (i < 0)                    throw new NoSuchElementException();                cursor = i;                return elementData(lastRet = i);            }        }        public void set(E e) {            if (lastRet == -1)                throw new IllegalStateException();            synchronized (Vector.this) {                checkForComodification();                Vector.this.set(lastRet, e);            }        }        public void add(E e) {            int i = cursor;            synchronized (Vector.this) {                checkForComodification();                Vector.this.add(i, e);                expectedModCount = modCount;            }            cursor = i + 1;            lastRet = -1;        }    }//jdk1.8 新加入的方法,遍历vector中每个元素,并应用于action行为,支持lambda表达式    @Override    public synchronized void forEach(Consumer<? super E> action) {        Objects.requireNonNull(action);        final int expectedModCount = modCount;        @SuppressWarnings("unchecked")        final E[] elementData = (E[]) this.elementData;        final int elementCount = this.elementCount;        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {            action.accept(elementData[i]);        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }    }//支持lambda表达式,判断是否复合某种条件,然后做其他操作    @Override    @SuppressWarnings("unchecked")    public synchronized boolean removeIf(Predicate<? super E> filter) {        Objects.requireNonNull(filter);        // figure out which elements are to be removed        // any exception thrown from the filter predicate at this stage        // will leave the collection unmodified        int removeCount = 0;        final int size = elementCount;        final BitSet removeSet = new BitSet(size);//位集合,记录符合条件的元素的索引        final int expectedModCount = modCount;        for (int i=0; modCount == expectedModCount && i < size; i++) {            @SuppressWarnings("unchecked")            final E element = (E) elementData[i];            if (filter.test(element)) {                removeSet.set(i);                removeCount++;            }        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        //删除符合条件的元素,左移        final boolean anyToRemove = removeCount > 0;        if (anyToRemove) {            final int newSize = size - removeCount;            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {                i = removeSet.nextClearBit(i);                elementData[j] = elementData[i];            }            for (int k=newSize; k < size; k++) {                elementData[k] = null;  // Let gc do its work            }            elementCount = newSize;            if (modCount != expectedModCount) {                throw new ConcurrentModificationException();            }            modCount++;        }        return anyToRemove;    }//支持lambda表达式,对全部元素进行替换操作    @Override    @SuppressWarnings("unchecked")    public synchronized void replaceAll(UnaryOperator<E> operator) {        Objects.requireNonNull(operator);        final int expectedModCount = modCount;        final int size = elementCount;        for (int i=0; modCount == expectedModCount && i < size; i++) {            elementData[i] = operator.apply((E) elementData[i]);        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        modCount++;    }// Arrays.sort 排序    @SuppressWarnings("unchecked")    @Override    public synchronized void sort(Comparator<? super E> c) {        final int expectedModCount = modCount;        Arrays.sort((E[]) elementData, 0, elementCount, c);        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        modCount++;    }    /**     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>     * and <em>fail-fast</em> {@link Spliterator} over the elements in this     * list.     *     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.     * Overriding implementations should document the reporting of additional     * characteristic values.     *     * @return a {@code Spliterator} over the elements in this list     * @since 1.8     */    @Override    public Spliterator<E> spliterator() {        return new VectorSpliterator<>(this, null, 0, -1, 0);    }    /** Similar to ArrayList Spliterator */    static final class VectorSpliterator<E> implements Spliterator<E> {        private final Vector<E> list;        private Object[] array;        private int index; // current index, modified on advance/split        private int fence; // -1 until used; then one past last index        private int expectedModCount; // initialized when fence set        /** Create new spliterator covering the given  range */        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,                          int expectedModCount) {            this.list = list;            this.array = array;            this.index = origin;            this.fence = fence;            this.expectedModCount = expectedModCount;        }        private int getFence() { // initialize on first use            int hi;            if ((hi = fence) < 0) {                synchronized(list) {                    array = list.elementData;                    expectedModCount = list.modCount;                    hi = fence = list.elementCount;                }            }            return hi;        }        public Spliterator<E> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid) ? null :                new VectorSpliterator<E>(list, array, lo, index = mid,                                         expectedModCount);        }        @SuppressWarnings("unchecked")        public boolean tryAdvance(Consumer<? super E> action) {            int i;            if (action == null)                throw new NullPointerException();            if (getFence() > (i = index)) {                index = i + 1;                action.accept((E)array[i]);                if (list.modCount != expectedModCount)                    throw new ConcurrentModificationException();                return true;            }            return false;        }        @SuppressWarnings("unchecked")        public void forEachRemaining(Consumer<? super E> action) {            int i, hi; // hoist accesses and checks from loop            Vector<E> lst; Object[] a;            if (action == null)                throw new NullPointerException();            if ((lst = list) != null) {                if ((hi = fence) < 0) {                    synchronized(lst) {                        expectedModCount = lst.modCount;                        a = array = lst.elementData;                        hi = fence = lst.elementCount;                    }                }                else                    a = array;                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {                    while (i < hi)                        action.accept((E) a[i++]);                    if (lst.modCount == expectedModCount)                        return;                }            }            throw new ConcurrentModificationException();        }        public long estimateSize() {            return (long) (getFence() - index);        }        public int characteristics() {            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;        }    }}

Vector使用案例

  • subList() 用法
/** * Created by Genge on 2016-06-19. */public class Solution {    public static void main(String[] args) {        Vector<String> vector = new Vector<String>();        vector.add("Genge");        vector.add("Hello");        vector.add("World");        System.out.println("处理前的结果:");        Iterator<String> iterator = vector.iterator();        while (iterator.hasNext()) {            System.out.println(iterator.next());        }        List<String> sublist = vector.subList(1, 2);        sublist.clear();        sublist.add("SB");        sublist.add("Huangdou");        System.out.println("处理后结果:");        Iterator<String> iter = vector.iterator();        while (iter.hasNext()) {            System.out.println(iter.next());        }    }}

结果图如下:

0 0