Android消息处理机制(Handler、Looper、MessageQueue与Message)

来源:互联网 发布:个人投资 知乎 编辑:程序博客网 时间:2024/04/28 01:35

Android是消息驱动的,实现消息驱动有几个要素:

  1. 消息的表示:Message
  2. 消息队列:MessageQueue
  3. 消息循环,用于循环取出消息进行处理:Looper
  4. 消息处理,消息循环从消息队列中取出消息后要对消息进行处理:Handler

平时我们最常使用的就是Message与Handler了,如果使用过HandlerThread或者自己实现类似HandlerThread的东西可能还会接触到Looper,而MessageQueue是Looper内部使用的,对于标准的SDK,我们是无法实例化并使用的(构造函数是包可见性)。

我们平时接触到的Looper、Message、Handler都是用JAVA实现的,Android做为基于Linux的系统,底层用C、C++实现的,而且还有NDK的存在,消息驱动的模型怎么可能只存在于JAVA层,实际上,在Native层存在与Java层对应的类如Looper、MessageQueue等。

 初始化消息队列

首先来看一下如果一个线程想实现消息循环应该怎么做,以HandlerThread为例:

复制代码
public void run() {    mTid = Process.myTid();    Looper.prepare();    synchronized (this) {        mLooper = Looper.myLooper();        notifyAll();    }    Process.setThreadPriority(mPriority);    onLooperPrepared();    Looper.loop();    mTid = -1;} 
复制代码

主要是红色标明的两句,首先调用prepare初始化MessageQueue与Looper,然后调用loop进入消息循环。先看一下Looper.prepare。

复制代码
public static void prepare() {    prepare(true);}private static void prepare(boolean quitAllowed) {    if (sThreadLocal.get() != null) {        throw new RuntimeException("Only one Looper may be created per thread");    }    sThreadLocal.set(new Looper(quitAllowed));}
复制代码

重载函数,quitAllowed默认为true,从名字可以看出来就是消息循环是否可以退出,默认是可退出的,Main线程(UI线程)初始化消息循环时会调用prepareMainLooper,传进去的是false。使用了ThreadLocal,每个线程可以初始化一个Looper。

再来看一下Looper在初始化时都做了什么:

复制代码
private Looper(boolean quitAllowed) {    mQueue = new MessageQueue(quitAllowed);    mRun = true;    mThread = Thread.currentThread();}MessageQueue(boolean quitAllowed) {    mQuitAllowed = quitAllowed;    nativeInit();} 
复制代码

在Looper初始化时,新建了一个MessageQueue的对象保存了在成员mQueue中。MessageQueue的构造函数是包可见性,所以我们是无法直接使用的,在MessageQueue初始化的时候调用了nativeInit,这是一个Native方法:

复制代码
static void android_os_MessageQueue_nativeInit(JNIEnv* env, jobject obj) {    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();    if (!nativeMessageQueue) {        jniThrowRuntimeException(env, "Unable to allocate native queue");        return;    }    nativeMessageQueue->incStrong(env);    android_os_MessageQueue_setNativeMessageQueue(env, obj, nativeMessageQueue);}static void android_os_MessageQueue_setNativeMessageQueue(JNIEnv* env, jobject messageQueueObj,        NativeMessageQueue* nativeMessageQueue) {    env->SetIntField(messageQueueObj, gMessageQueueClassInfo.mPtr,             reinterpret_cast<jint>(nativeMessageQueue));}
复制代码

在nativeInit中,new了一个Native层的MessageQueue的对象,并将其地址保存在了Java层MessageQueue的成员mPtr中,Android中有好多这样的实现,一个类在Java层与Native层都有实现,通过JNI的GetFieldID与SetIntField把Native层的类的实例地址保存到Java层类的实例的mPtr成员中,比如Parcel。

再看NativeMessageQueue的实现:

复制代码
NativeMessageQueue::NativeMessageQueue() : mInCallback(false), mExceptionObj(NULL) {    mLooper = Looper::getForThread();    if (mLooper == NULL) {        mLooper = new Looper(false);        Looper::setForThread(mLooper);    }}
复制代码

在NativeMessageQueue的构造函数中获得了一个Native层的Looper对象,Native层的Looper也使用了线程本地存储,注意new Looper时传入了参数false。

复制代码
Looper::Looper(bool allowNonCallbacks) :        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),        mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {    int wakeFds[2];    int result = pipe(wakeFds);    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);    mWakeReadPipeFd = wakeFds[0];    mWakeWritePipeFd = wakeFds[1];    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",            errno);    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",            errno);    // Allocate the epoll instance and register the wake pipe.    mEpollFd = epoll_create(EPOLL_SIZE_HINT);    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);    struct epoll_event eventItem;    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union    eventItem.events = EPOLLIN;    eventItem.data.fd = mWakeReadPipeFd;    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, & eventItem);    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",            errno);}
复制代码

Native层的Looper使用了epoll。初始化了一个管道,用mWakeWritePipeFd与mWakeReadPipeFd分别保存了管道的写端与读端,并监听了读端的EPOLLIN事件。注意下初始化列表的值,mAllowNonCallbacks的值为false。

mAllowNonCallback是做什么的?使用epoll仅为了监听mWakeReadPipeFd的事件?其实Native Looper不仅可以监听这一个描述符,Looper还提供了addFd方法:

int addFd(int fd, int ident, int events, ALooper_callbackFunc callback, void* data);int addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data);

fd表示要监听的描述符。ident表示要监听的事件的标识,值必须>=0或者为ALOOPER_POLL_CALLBACK(-2),event表示要监听的事件,callback是事件发生时的回调函数,mAllowNonCallbacks的作用就在于此,当mAllowNonCallbacks为true时允许callback为NULL,在pollOnce中ident作为结果返回,否则不允许callback为空,当callback不为NULL时,ident的值会被忽略。还是直接看代码方便理解:

复制代码
int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) {#if DEBUG_CALLBACKS    ALOGD("%p ~ addFd - fd=%d, ident=%d, events=0x%x, callback=%p, data=%p", this, fd, ident,            events, callback.get(), data);#endif    if (!callback.get()) {        if (! mAllowNonCallbacks) {            ALOGE("Invalid attempt to set NULL callback but not allowed for this looper.");            return -1;        }        if (ident < 0) {            ALOGE("Invalid attempt to set NULL callback with ident < 0.");            return -1;        }    } else {        ident = ALOOPER_POLL_CALLBACK;    }    int epollEvents = 0;    if (events & ALOOPER_EVENT_INPUT) epollEvents |= EPOLLIN;    if (events & ALOOPER_EVENT_OUTPUT) epollEvents |= EPOLLOUT;    { // acquire lock        AutoMutex _l(mLock);        Request request;        request.fd = fd;        request.ident = ident;        request.callback = callback;        request.data = data;        struct epoll_event eventItem;        memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union        eventItem.events = epollEvents;        eventItem.data.fd = fd;        ssize_t requestIndex = mRequests.indexOfKey(fd);        if (requestIndex < 0) {            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);            if (epollResult < 0) {                ALOGE("Error adding epoll events for fd %d, errno=%d", fd, errno);                return -1;            }            mRequests.add(fd, request);        } else {            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem);            if (epollResult < 0) {                ALOGE("Error modifying epoll events for fd %d, errno=%d", fd, errno);                return -1;            }            mRequests.replaceValueAt(requestIndex, request);        }    } // release lock    return 1;}
复制代码

如果callback为空会检查mAllowNonCallbacks看是否允许callback为空,如果允许callback为空还会检测ident是否>=0。如果callback不为空会把ident的值赋值为ALOOPER_POLL_CALLBACK,不管传进来的是什么值。

接下来把传进来的参数值封装到一个Request结构体中,并以描述符为键保存到一个KeyedVector mRequests中,然后通过epoll_ctl添加或替换(如果这个描述符之前有调用addFD添加监听)对这个描述符事件的监听。

类图:

  

发送消息

通过Looper.prepare初始化好消息队列后就可以调用Looper.loop进入消息循环了,然后我们就可以向消息队列发送消息,消息循环就会取出消息进行处理,在看消息处理之前,先看一下消息是怎么被添加到消息队列的。

在Java层,Message类表示一个消息对象,要发送消息首先就要先获得一个消息对象,Message类的构造函数是public的,但是不建议直接new Message,Message内部保存了一个缓存的消息池,我们可以用obtain从缓存池获得一个消息,Message使用完后系统会调用recycle回收,如果自己new很多Message,每次使用完后系统放入缓存池,会占用很多内存的,如下所示:

复制代码
    public static Message obtain() {        synchronized (sPoolSync) {            if (sPool != null) {                Message m = sPool;                sPool = m.next;                m.next = null;                sPoolSize--;                return m;            }        }        return new Message();    }    public void recycle() {        clearForRecycle();        synchronized (sPoolSync) {            if (sPoolSize < MAX_POOL_SIZE) {                next = sPool;                sPool = this;                sPoolSize++;            }        }    }
复制代码

Message内部通过next成员实现了一个链表,这样sPool就了为了一个Messages的缓存链表。

消息对象获取到了怎么发送呢,大家都知道是通过Handler的post、sendMessage等方法,其实这些方法最终都是调用的同一个方法sendMessageAtTime:

复制代码
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {        MessageQueue queue = mQueue;        if (queue == null) {            RuntimeException e = new RuntimeException(                    this + " sendMessageAtTime() called with no mQueue");            Log.w("Looper", e.getMessage(), e);            return false;        }        return enqueueMessage(queue, msg, uptimeMillis);    } 
复制代码

sendMessageAtTime获取到消息队列然后调用enqueueMessage方法,消息队列mQueue是从与Handler关联的Looper获得的。

复制代码
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {        msg.target = this;        if (mAsynchronous) {            msg.setAsynchronous(true);        }        return queue.enqueueMessage(msg, uptimeMillis);    }
复制代码

enqueueMessage将message的target设置为当前的handler,然后调用MessageQueue的enqueueMessage,在调用queue.enqueueMessage之前判断了mAsynchronous,从名字看是异步消息的意思,要明白Asynchronous的作用,需要先了解一个概念Barrier。

Barrier与Asynchronous Message

Barrier是什么意思呢,从名字看是一个拦截器,在这个拦截器后面的消息都暂时无法执行,直到这个拦截器被移除了,MessageQueue有一个函数叫enqueueSyncBarier可以添加一个Barrier。

复制代码
    int enqueueSyncBarrier(long when) {        // Enqueue a new sync barrier token.        // We don't need to wake the queue because the purpose of a barrier is to stall it.        synchronized (this) {            final int token = mNextBarrierToken++;            final Message msg = Message.obtain();            msg.arg1 = token;            Message prev = null;            Message p = mMessages;            if (when != 0) {                while (p != null && p.when <= when) {                    prev = p;                    p = p.next;                }            }            if (prev != null) { // invariant: p == prev.next                msg.next = p;                prev.next = msg;            } else {                msg.next = p;                mMessages = msg;            }            return token;        }    }
复制代码

在enqueueSyncBarrier中,obtain了一个Message,并设置msg.arg1=token,token仅是一个每次调用enqueueSyncBarrier时自增的int值,目的是每次调用enqueueSyncBarrier时返回唯一的一个token,这个Message同样需要设置执行时间,然后插入到消息队列,特殊的是这个Message没有设置target,即msg.target为null。

进入消息循环后会不停地从MessageQueue中取消息执行,调用的是MessageQueue的next函数,其中有这么一段:

复制代码
Message msg = mMessages;if (msg != null && msg.target == null) {    // Stalled by a barrier.  Find the next asynchronous message in the queue.    do {        prevMsg = msg;        msg = msg.next;    } while (msg != null && !msg.isAsynchronous());}
复制代码

如果队列头部的消息的target为null就表示它是个Barrier,因为只有两种方法往mMessages中添加消息,一种是enqueueMessage,另一种是enqueueBarrier,而enqueueMessage中如果mst.target为null是直接抛异常的,后面会看到。

所谓的异步消息其实就是这样的,我们可以通过enqueueBarrier往消息队列中插入一个Barrier,那么队列中执行时间在这个Barrier以后的同步消息都会被这个Barrier拦截住无法执行,直到我们调用removeBarrier移除了这个Barrier,而异步消息则没有影响,消息默认就是同步消息,除非我们调用了Message的setAsynchronous,这个方法是隐藏的。只有在初始化Handler时通过参数指定往这个Handler发送的消息都是异步的,这样在Handler的enqueueMessage中就会调用Message的setAsynchronous设置消息是异步的,从上面Handler.enqueueMessage的代码中可以看到。

 所谓异步消息,其实只有一个作用,就是在设置Barrier时仍可以不受Barrier的影响被正常处理,如果没有设置Barrier,异步消息就与同步消息没有区别,可以通过removeSyncBarrier移除Barrier:

复制代码
void removeSyncBarrier(int token) {    // Remove a sync barrier token from the queue.    // If the queue is no longer stalled by a barrier then wake it.    final boolean needWake;    synchronized (this) {        Message prev = null;        Message p = mMessages;        while (p != null && (p.target != null || p.arg1 != token)) {            prev = p;            p = p.next;        }        if (p == null) {            throw new IllegalStateException("The specified message queue synchronization "                    + " barrier token has not been posted or has already been removed.");        }        if (prev != null) {            prev.next = p.next;            needWake = false;        } else {            mMessages = p.next;            needWake = mMessages == null || mMessages.target != null;        }        p.recycle();    }    if (needWake) {        nativeWake(mPtr);    }}
复制代码

参数token就是enqueueSyncBarrier的返回值,如果没有调用指定的token不存在是会抛异常的。

enqueueMessage

接下来看一下是怎么MessageQueue的enqueueMessage。

复制代码
    final boolean enqueueMessage(Message msg, long when) {        if (msg.isInUse()) {            throw new AndroidRuntimeException(msg + " This message is already in use.");        }        if (msg.target == null) {            throw new AndroidRuntimeException("Message must have a target.");        }        boolean needWake;        synchronized (this) {            if (mQuiting) {                RuntimeException e = new RuntimeException(                        msg.target + " sending message to a Handler on a dead thread");                Log.w("MessageQueue", e.getMessage(), e);                return false;            }            msg.when = when;            Message p = mMessages;            if (p == null || when == 0 || when < p.when) {                // New head, wake up the event queue if blocked.                msg.next = p;                mMessages = msg;                needWake = mBlocked;            } else {                // Inserted within the middle of the queue.  Usually we don't have to wake                // up the event queue unless there is a barrier at the head of the queue                // and the message is the earliest asynchronous message in the queue.                needWake = mBlocked && p.target == null && msg.isAsynchronous();                Message prev;                for (;;) {                    prev = p;                    p = p.next;                    if (p == null || when < p.when) {                        break;                    }                    if (needWake && p.isAsynchronous()) {                        needWake = false;                    }                }                msg.next = p; // invariant: p == prev.next                prev.next = msg;            }        }        if (needWake) {            nativeWake(mPtr);        }        return true;    }
复制代码

注意上面代码红色的部分,当msg.target为null时是直接抛异常的。

在enqueueMessage中首先判断,如果当前的消息队列为空,或者新添加的消息的执行时间when是0,或者新添加的消息的执行时间比消息队列头的消息的执行时间还早,就把消息添加到消息队列头(消息队列按时间排序),否则就要找到合适的位置将当前消息添加到消息队列。

Native发送消息

消息模型不只是Java层用的,Native层也可以用,前面也看到了消息队列初始化时也同时初始化了Native层的Looper与NativeMessageQueue,所以Native层应该也是可以发送消息的。与Java层不同的是,Native层是通过Looper发消息的,同样所有的发送方法最终是调用sendMessageAtTime:

复制代码
void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler,        const Message& message) {#if DEBUG_CALLBACKS    ALOGD("%p ~ sendMessageAtTime - uptime=%lld, handler=%p, what=%d",            this, uptime, handler.get(), message.what);#endif    size_t i = 0;    { // acquire lock        AutoMutex _l(mLock);        size_t messageCount = mMessageEnvelopes.size();        while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) {            i += 1;        }        MessageEnvelope messageEnvelope(uptime, handler, message);        mMessageEnvelopes.insertAt(messageEnvelope, i, 1);        // Optimization: If the Looper is currently sending a message, then we can skip        // the call to wake() because the next thing the Looper will do after processing        // messages is to decide when the next wakeup time should be.  In fact, it does        // not even matter whether this code is running on the Looper thread.        if (mSendingMessage) {            return;        }    } // release lock    // Wake the poll loop only when we enqueue a new message at the head.    if (i == 0) {        wake();    }}
复制代码

 Native Message只有一个int型的what字段用来区分不同的消息,sendMessageAtTime指定了Message,Message要执行的时间when,与处理这个消息的Handler:MessageHandler,然后用MessageEnvelope封装了time, MessageHandler与Message,Native层发的消息都保存到了mMessageEnvelopes中,mMessageEnvelopes是一个Vector<MessageEnvelope>。Native层消息同样是按时间排序,与Java层的消息分别保存在两个队列里。

消息循环

消息队列初始化好了,也知道怎么发消息了,下面就是怎么处理消息了,看Handler.loop函数:

复制代码
    public static void loop() {        final Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        final MessageQueue queue = me.mQueue;        // Make sure the identity of this thread is that of the local process,        // and keep track of what that identity token actually is.        Binder.clearCallingIdentity();        final long ident = Binder.clearCallingIdentity();        for (;;) {            Message msg = queue.next(); // might block            if (msg == null) {                // No message indicates that the message queue is quitting.                return;            }            // This must be in a local variable, in case a UI event sets the logger            Printer logging = me.mLogging;            if (logging != null) {                logging.println(">>>>> Dispatching to " + msg.target + " " +                        msg.callback + ": " + msg.what);            }            msg.target.dispatchMessage(msg);            if (logging != null) {                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);            }            // Make sure that during the course of dispatching the            // identity of the thread wasn't corrupted.            final long newIdent = Binder.clearCallingIdentity();            if (ident != newIdent) {                Log.wtf(TAG, "Thread identity changed from 0x"                        + Long.toHexString(ident) + " to 0x"                        + Long.toHexString(newIdent) + " while dispatching to "                        + msg.target.getClass().getName() + " "                        + msg.callback + " what=" + msg.what);            }            msg.recycle();        }    }
复制代码

loop每次从MessageQueue取出一个Message,调用msg.target.dispatchMessage(msg),target就是发送message时跟message关联的handler,这样就调用到了熟悉的dispatchMessage,Message被处理后会被recycle。当queue.next返回null时会退出消息循环,接下来就看一下MessageQueue.next是怎么取出消息的,又会在什么时候返回null。

复制代码
final Message next() {        int pendingIdleHandlerCount = -1; // -1 only during first iteration        int nextPollTimeoutMillis = 0;        for (;;) {            if (nextPollTimeoutMillis != 0) {                Binder.flushPendingCommands();            }            nativePollOnce(mPtr, nextPollTimeoutMillis);            synchronized (this) {                if (mQuiting) {                    return null;                }                // Try to retrieve the next message.  Return if found.                final long now = SystemClock.uptimeMillis();                Message prevMsg = null;                Message msg = mMessages;                if (msg != null && msg.target == null) {                    // Stalled by a barrier.  Find the next asynchronous message in the queue.                    do {                        prevMsg = msg;                        msg = msg.next;                    } while (msg != null && !msg.isAsynchronous());                }                if (msg != null) {                    if (now < msg.when) {                        // Next message is not ready.  Set a timeout to wake up when it is ready.                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                    } else {                        // Got a message.                        mBlocked = false;                        if (prevMsg != null) {                            prevMsg.next = msg.next;                        } else {                            mMessages = msg.next;                        }                        msg.next = null;                        if (false) Log.v("MessageQueue", "Returning message: " + msg);                        msg.markInUse();                        return msg;                    }                } else {                    // No more messages.                    nextPollTimeoutMillis = -1;                }                // If first time idle, then get the number of idlers to run.                // Idle handles only run if the queue is empty or if the first message                // in the queue (possibly a barrier) is due to be handled in the future.                if (pendingIdleHandlerCount < 0                        && (mMessages == null || now < mMessages.when)) {                    pendingIdleHandlerCount = mIdleHandlers.size();                }                if (pendingIdleHandlerCount <= 0) {                    // No idle handlers to run.  Loop and wait some more.                    mBlocked = true;                    continue;                }                if (mPendingIdleHandlers == null) {                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];                }                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);            }            // Run the idle handlers.            // We only ever reach this code block during the first iteration.            for (int i = 0; i < pendingIdleHandlerCount; i++) {                final IdleHandler idler = mPendingIdleHandlers[i];                mPendingIdleHandlers[i] = null; // release the reference to the handler                boolean keep = false;                try {                    keep = idler.queueIdle();                } catch (Throwable t) {                    Log.wtf("MessageQueue", "IdleHandler threw exception", t);                }                if (!keep) {                    synchronized (this) {                        mIdleHandlers.remove(idler);                    }                }            }            // Reset the idle handler count to 0 so we do not run them again.            pendingIdleHandlerCount = 0;            // While calling an idle handler, a new message could have been delivered            // so go back and look again for a pending message without waiting.            nextPollTimeoutMillis = 0;        }    }
复制代码

MessageQueue.next首先会调用nativePollOnce,然后如果mQuiting为true就返回null,Looper就会退出消息循环。

接下来取消息队列头部的消息,如果头部消息是Barrier(target==null)就往后遍历找到第一个异步消息,接下来检测获取到的消息(消息队列头部的消息或者第一个异步消息),如果为null表示没有消息要执行,设置nextPollTimeoutMillis = -1;否则检测这个消息要执行的时间,如果到执行时间了就将这个消息markInUse并从消息队列移除,然后从next返回到loop;否则设置nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE),即距离最近要执行的消息还需要多久,无论是当前消息队列没有消息可以执行(设置了Barrier并且没有异步消息或消息队列为空)还是队列头部的消息未到执行时间,都会执行后面的代码,看有没有设置IdleHandler,如果有就运行IdleHandler,当IdleHandler被执行之后会设置nextPollTimeoutMillis = 0。

首先看一下nativePollOnce,native方法,调用JNI,最后调到了Native Looper::pollOnce,并从Java层传进去了nextPollTimeMillis,即Java层的消息队列中执行时间最近的消息还要多久到执行时间。

复制代码
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {    int result = 0;    for (;;) {        while (mResponseIndex < mResponses.size()) {            const Response& response = mResponses.itemAt(mResponseIndex++);            int ident = response.request.ident;            if (ident >= 0) {                int fd = response.request.fd;                int events = response.events;                void* data = response.request.data;#if DEBUG_POLL_AND_WAKE                ALOGD("%p ~ pollOnce - returning signalled identifier %d: "                        "fd=%d, events=0x%x, data=%p",                        this, ident, fd, events, data);#endif                if (outFd != NULL) *outFd = fd;                if (outEvents != NULL) *outEvents = events;                if (outData != NULL) *outData = data;                return ident;            }        }        if (result != 0) {#if DEBUG_POLL_AND_WAKE            ALOGD("%p ~ pollOnce - returning result %d", this, result);#endif            if (outFd != NULL) *outFd = 0;            if (outEvents != NULL) *outEvents = 0;            if (outData != NULL) *outData = NULL;            return result;        }        result = pollInner(timeoutMillis);    }}
复制代码

先不看开始的一大串代码,先看一下pollInner:

复制代码
int Looper::pollInner(int timeoutMillis) {#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);#endif    // Adjust the timeout based on when the next message is due.    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);        if (messageTimeoutMillis >= 0                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {            timeoutMillis = messageTimeoutMillis;        }#if DEBUG_POLL_AND_WAKE        ALOGD("%p ~ pollOnce - next message in %lldns, adjusted timeout: timeoutMillis=%d",                this, mNextMessageUptime - now, timeoutMillis);#endif    }    // Poll.    int result = ALOOPER_POLL_WAKE;    mResponses.clear();    mResponseIndex = 0;    struct epoll_event eventItems[EPOLL_MAX_EVENTS];    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);    // Acquire lock.    mLock.lock();    // Check for poll error.    if (eventCount < 0) {        if (errno == EINTR) {            goto Done;        }        ALOGW("Poll failed with an unexpected error, errno=%d", errno);        result = ALOOPER_POLL_ERROR;        goto Done;    }    // Check for poll timeout.    if (eventCount == 0) {#if DEBUG_POLL_AND_WAKE        ALOGD("%p ~ pollOnce - timeout", this);#endif        result = ALOOPER_POLL_TIMEOUT;        goto Done;    }    // Handle all events.#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);#endif    for (int i = 0; i < eventCount; i++) {        int fd = eventItems[i].data.fd;        uint32_t epollEvents = eventItems[i].events;        if (fd == mWakeReadPipeFd) {            if (epollEvents & EPOLLIN) {                awoken();            } else {                ALOGW("Ignoring unexpected epoll events 0x%x on wake read pipe.", epollEvents);            }        } else {            ssize_t requestIndex = mRequests.indexOfKey(fd);            if (requestIndex >= 0) {                int events = 0;                if (epollEvents & EPOLLIN) events |= ALOOPER_EVENT_INPUT;                if (epollEvents & EPOLLOUT) events |= ALOOPER_EVENT_OUTPUT;                if (epollEvents & EPOLLERR) events |= ALOOPER_EVENT_ERROR;                if (epollEvents & EPOLLHUP) events |= ALOOPER_EVENT_HANGUP;                pushResponse(events, mRequests.valueAt(requestIndex));            } else {                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "                        "no longer registered.", epollEvents, fd);            }        }    }Done: ;    // Invoke pending message callbacks.    mNextMessageUptime = LLONG_MAX;    while (mMessageEnvelopes.size() != 0) {        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);        if (messageEnvelope.uptime <= now) {            // Remove the envelope from the list.            // We keep a strong reference to the handler until the call to handleMessage            // finishes.  Then we drop it so that the handler can be deleted *before*            // we reacquire our lock.            { // obtain handler                sp<MessageHandler> handler = messageEnvelope.handler;                Message message = messageEnvelope.message;                mMessageEnvelopes.removeAt(0);                mSendingMessage = true;                mLock.unlock();#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",                        this, handler.get(), message.what);#endif                handler->handleMessage(message);            } // release handler            mLock.lock();            mSendingMessage = false;            result = ALOOPER_POLL_CALLBACK;        } else {            // The last message left at the head of the queue determines the next wakeup time.            mNextMessageUptime = messageEnvelope.uptime;            break;        }    }    // Release lock.    mLock.unlock();    // Invoke all response callbacks.    for (size_t i = 0; i < mResponses.size(); i++) {        Response& response = mResponses.editItemAt(i);        if (response.request.ident == ALOOPER_POLL_CALLBACK) {            int fd = response.request.fd;            int events = response.events;            void* data = response.request.data;#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",                    this, response.request.callback.get(), fd, events, data);#endif            int callbackResult = response.request.callback->handleEvent(fd, events, data);            if (callbackResult == 0) {                removeFd(fd);            }            // Clear the callback reference in the response structure promptly because we            // will not clear the response vector itself until the next poll.            response.request.callback.clear();            result = ALOOPER_POLL_CALLBACK;        }    }    return result;}
复制代码

Java层的消息都保存在了Java层MessageQueue的成员mMessages中,Native层的消息都保存在了Native Looper的mMessageEnvelopes中,这就可以说有两个消息队列,而且都是按时间排列的。timeOutMillis表示Java层下个要执行的消息还要多久执行,mNextMessageUpdate表示Native层下个要执行的消息还要多久执行,如果timeOutMillis为0,epoll_wait不设置TimeOut直接返回;如果为-1说明Java层无消息直接用Native的time out;否则pollInner取这两个中的最小值作为timeOut调用epoll_wait。当epoll_wait返回时就可能有以下几种情况:

  1. 出错返回。

  2. Time Out

  3. 正常返回,描述符上有事件产生。

如果是前两种情况直接goto DONE。

否则就说明FD上有事件发生了,如果是mWakeReadPipeFd的EPOLLIN事件就调用awoken,如果不是mWakeReadPipeFd,那就是通过addFD添加的fd,在addFD中将要监听的fd及其events,callback,data封装成了Request对象,并以fd为键保存到了KeyedVector mRequests中,所以在这里就以fd为键获得在addFD时关联的Request,并连同events通过pushResonse加入mResonse队列(Vector),Resonse仅是对events与Request的封装。如果是epoll_wait出错或timeout,就没有描述符上有事件,就不用执行这一段代码,所以直接goto DONE了。

复制代码
void Looper::pushResponse(int events, const Request& request) {    Response response;    response.events = events;    response.request = request;    mResponses.push(response);}
复制代码

接下来进入DONE部分,从mMessageEnvelopes取出头部的Native消息,如果到达了执行时间就调用它内部保存的MessageeHandler的handleMessage处理并从Native 消息队列移除,设置result为ALOOPER_POLL_CALLBACK,否则计算mNextMessageUptime表示Native消息队列下一次消息要执行的时间。如果未到头部消息的执行时间有可能是Java层消息队列消息的执行时间小于Native层消息队列头部消息的执行时间,到达了Java层消息的执行时间epoll_wait TimeOut返回了,或都通过addFd添加的描述符上有事件发生导致epoll_wait返回,或者epoll_wait是出错返回。Native消息是没有Barrier与Asynchronous的。

最后,遍历mResponses(前面刚通过pushResponse存进去的),如果response.request.ident ==ALOOPER_POLL_CALLBACK,就调用注册的callback的handleEvent(fd, events, data)进行处理,然后从mResonses队列中移除,这次遍历完之后,mResponses中保留来来的就都是ident>=0并且callback为NULL的了。在NativeMessageQueue初始化Looper时传入了mAllowNonCallbacks为false,所以这次处理完后mResponses一定为空。

接下来返回到pollOnce。pollOnce是一个for循环,pollInner中处理了所有response.request.ident==ALOOPER_POLL_CALLBACK的Response,在第二次进入for循环后如果mResponses不为空就可以找到ident>0的Response,将其ident作为返回值返回由调用pollOnce的函数自己处理,在这里我们是在NativeMessageQueue中调用的Loope的pollOnce,没对返回值进行处理,而且mAllowNonCallbacks为false也就不可能进入这个循环。pollInner返回值不可能是0,或者说只可能是负数,所以pollOnce中的for循环只会执行两次,在第二次就返回了。

Native Looper可以单独使用,也有一个prepare函数,这时mAllowNonCallbakcs值可能为true,pollOnce中对mResponses的处理就有意义了。

 wake与awoken

在Native Looper的构造函数中,通过pipe打开了一个管道,并用mWakeReadPipeFd与mWakeWritePipeFd分别保存了管道的读端与写端,然后用epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd,& eventItem)监听了读端的EPOLLIN事件,在pollInner中通过epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS,timeoutMillis)读取事件,那是在什么时候往mWakeWritePipeFd写,又是在什么时候读的mWakeReadPipeFd呢?

在Looper.cpp中我们可以发现如下两个函数:

复制代码
void Looper::wake() {#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ wake", this);#endif    ssize_t nWrite;    do {        nWrite = write(mWakeWritePipeFd, "W", 1);    } while (nWrite == -1 && errno == EINTR);    if (nWrite != 1) {        if (errno != EAGAIN) {            ALOGW("Could not write wake signal, errno=%d", errno);        }    }}void Looper::awoken() {#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ awoken", this);#endif    char buffer[16];    ssize_t nRead;    do {        nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));    } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));}
复制代码

wake函数向mWakeWritePipeFd写入了一个“W”字符,awoken从mWakeReadPipeFd读,往mWakeWritePipeFd写数据只是为了在pollInner中的epoll_wait可以监听到事件返回。在pollInner也可以看到如果是mWakeReadPipeFd的EPOLLIN事件只是调用了awoken消耗掉了写入的字符就往后处理了。

那什么时候调用wake呢?这个只要找到调用的地方分析一下就行了,先看Looper.cpp,在sendMessageAtTime即发送Native Message的时候,根据发送的Message的执行时间查找mMessageEnvelopes计算应该插入的位置,如果是在头部插入,就调用wake唤醒epoll_wait,因为在进入pollInner时根据Java层消息队列头部消息的执行时间与Native层消息队列头部消息的执行时间计算出了一个timeout,如果这个新消息是在头部插入,说明执行时间至少在上述两个消息中的一个之前,所以应该唤醒epoll_wait,epoll_wait返回后,检查Native消息队列,看头部消息即刚插入的消息是否到执行时间了,到了就执行,否则就可能需要设置新的timeout。同样在Java层的MessageQueue中,有一个函数nativeWake也同样可以通过JNI调用wake,调用nativeWake的时机与在Native调用wake的时机类似,在消息队列头部插入消息,还有一种情况就是,消息队列头部是一个Barrier,而且插入的消息是第一个异步消息。

复制代码
if (p == null || when == 0 || when < p.when) {    // New head, wake up the event queue if blocked.    msg.next = p;    mMessages = msg;    needWake = mBlocked;} else {    // Inserted within the middle of the queue.  Usually we don't have to wake    // up the event queue unless there is a barrier at the head of the queue    // and the message is the earliest asynchronous message in the queue.    needWake = mBlocked && p.target == null && msg.isAsynchronous();//如果头部是Barrier并且新消息是异步消息则“有可能”需要唤醒    Message prev;    for (;;) {        prev = p;        p = p.next;        if (p == null || when < p.when) {            break;        }        if (needWake && p.isAsynchronous()) { // 消息队列中有异步消息并且执行时间在新消息之前,所以不需要唤醒。            needWake = false;        }    }    msg.next = p; // invariant: p == prev.next    prev.next = msg;}
复制代码

在头部插入消息不一定调用nativeWake,因为之前可能正在执行IdleHandler,如果执行了IdleHandler,就在IdleHandler执行后把nextPollTimeoutMillis设置为0,下次进入for循环就用0调用nativePollOnce,不需要wake,只有在没有消息可以执行(消息队列为空或没到执行时间)并且没有设置IdleHandler时mBlocked才会为true。

如果Java层的消息队列被Barrier Block住了并且当前插入的是一个异步消息有可能需要唤醒Looper,因为异步消息可以在Barrier下执行,但是这个异步消息一定要是执行时间最早的异步消息。

退出Looper也需要wake,removeSyncBarrier时也可能需要。


原文地址:http://www.cnblogs.com/angeldevil/p/3340644.html

0 0
原创粉丝点击