MLiA SVM心得

来源:互联网 发布:九阴绝学声望回收数据 编辑:程序博客网 时间:2024/05/16 05:44

svm部分的理论部分昨天看完的,也是有些地方似懂非懂,不过大体上了解了。

今天完成了代码部分运行。最后有个例子是手写测试的,之前KNN时的例子,现在拿出来比较SVM的效果。

文章首先介绍了没有使用核函数的SVM分类方法,我自己电脑运行实在是慢,就把代码贴上来。

SVM主要在于核函数的选择,还有thegma的选择。其中有几个概念:内核,thegma,训练错误率,测试错误率,支持向量数。

支持向量机之所以称为“机”,是因为它会产生一个二值决策结果,即它是一种决策机。

核方法(核技巧)将数据从低维空间映射到高维空间。

下面就没什么说了,上代码了(明天开始看LDA,一个新的任务~。~):

# -*- coding: cp936 -*-__author__ = 'Administrator'from numpy import *import numpy as npimport datetimestartTime = datetime.datetime.now()def loadDataSet(filenName):    dataMat = []    labelMat = []    fr = open(filenName)    for line in fr.readlines():        lineArr = line.strip().split('\t')        dataMat.append([float(lineArr[0]), float(lineArr[1])])        labelMat.append(float(lineArr[2]))    return dataMat, labelMatdef selectJrand(i, m):    j = i    while j == i:        j = int(random.uniform(0, m))    return jdef clipAlpha(aj, H, L):    if aj > H:        aj = H    if L > aj:        aj = L    return ajdef smoSimple(dataMatIn, classLabels, C, toler, maxIter):    dataMatrix = mat(dataMatIn)    labelMat = mat(classLabels).transpose()    b = 0    m, n = shape(dataMatrix)    alphas = mat(zeros((m, 1)))    iter = 0    while iter < maxIter:        alphaPairsChanged = 0        for i in range(m):            fXi = float(np.multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[i, :].T)) + b            Ei = fXi - float(labelMat[i])            if ((labelMat[i] * Ei < -toler)                and (alphas[i] < C)) or ((labelMat[i] * Ei > toler)                                         and (alphas[i] > 0)):                j = selectJrand(i, m)                fXj = float(np.multiply(alphas, labelMat).T *(dataMatrix * dataMatrix[j, :].T)) + b                Ej = fXj - float(labelMat[j])                alphaIold = alphas[i].copy()                alphaIold = alphas[j].copy()                if labelMat[i] != labelMat[j]:                    L = max(0, alphas[j] - alphas[i])                    H = min(C, C + alphas[j] - alphas[i])                else:                    L = max(0, alphas[j] + alphas[i] - C)                    H = min(C, alphas[j] + alphas[i])                if L == H:                    print 'L==H'                    continue                eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T - dataMatrix[i, :] * dataMatrix[i, :].T - dataMatrix[j, :] * dataMatrix[j, :].T            if eta >= 0:                print 'eta>=o'                continue            alphas[j] -= labelMat[j] * (Ei - Ej) / eta            alphas[j] = clipAlpha(alphas[j], H, L)            if abs(alphas[j] - alphaIold) < 0.00001:                print 'j not moving enough'                continue            alphas[i] += labelMat[j] * labelMat[i] * (alphaIold - alphas[j])            b1 = b - Ei - labelMat[i] * (alphas[i] - alphaIold) *  dataMatrix[i, :] * dataMatrix[i, :].T -  labelMat[j] * (alphas[j] - alphaIold) *dataMatrix[i, :] * dataMatrix[j, :].T            b2 = b - Ej - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T -  labelMat[j] * (alphas[j] - alphaIold) * dataMatrix[j, :] * dataMatrix[j, :].T            if (0 < alphas[i]) and (C > alphas[i]):                b = b1            elif (0 < alphas[j]) and (C > alphas[j]):                b = b2            else:                b = (b1 + b2) / 2.0            alphaPairsChanged += 1            print 'iter: %d i:%d, pairs changed %d' % (iter, i, alphaPairsChanged)        if alphaPairsChanged == 0:            iter += 1        else:            iter = 0        print 'iteration number; %d' % iter    return b, alphas# dataArr, labelArr = loadDataSet('testSet.txt')# print dataArr# b, alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)# print b# print alphas# print shape(alphas[alphas > 0])def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space    m,n = shape(X)    K = mat(zeros((m,1)))    if kTup[0]=='lin': K = X * A.T   #linear kernel    elif kTup[0]=='rbf':        for j in range(m):            deltaRow = X[j,:] - A            K[j] = deltaRow*deltaRow.T        K = np.exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab    else: raise NameError('Houston We Have a Problem -- \    That Kernel is not recognized')    return K# class optStruct:#     def __init__(self,dataMatIn, classLabels, C, toler):  # Initialize the structure with the parameters#         self.X = dataMatIn#         self.labelMat = classLabels#         self.C = C#         self.tol = toler#         self.m = shape(dataMatIn)[0]#         self.alphas = mat(zeros((self.m,1)))#         self.b = 0#         self.eCache = mat(zeros((self.m,2))) #first column is valid flag#         # self.K = mat(zeros((self.m,self.m)))#         # for i in range(self.m):#         #     self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)class optStruct:    def __init__(self,dataMatIn, classLabels, C, toler,kTup):  # Initialize the structure with the parameters        self.X = dataMatIn        self.labelMat = classLabels        self.C = C        self.tol = toler        self.m = shape(dataMatIn)[0]        self.alphas = mat(zeros((self.m,1)))        self.b = 0        self.eCache = mat(zeros((self.m,2))) #first column is valid flag        self.K = mat(zeros((self.m,self.m)))        for i in range(self.m):            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)# def calcEk(oS, k):#     fXk = float(np.multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b#     Ek = fXk - float(oS.labelMat[k])#     return Ekdef calcEk(oS, k):    fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)    Ek = fXk - float(oS.labelMat[k])    return Ekdef selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej    maxK = -1; maxDeltaE = 0; Ej = 0    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E    validEcacheList = nonzero(oS.eCache[:,0].A)[0]    if (len(validEcacheList)) > 1:        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E            if k == i: continue #don't calc for i, waste of time            Ek = calcEk(oS, k)            deltaE = abs(Ei - Ek)            if (deltaE > maxDeltaE):                maxK = k; maxDeltaE = deltaE; Ej = Ek        return maxK, Ej    else:   #in this case (first time around) we don't have any valid eCache values        j = selectJrand(i, oS.m)        Ej = calcEk(oS, j)    return j, Ejdef updateEk(oS, k):#after any alpha has changed update the new value in the cache    Ek = calcEk(oS, k)    oS.eCache[k] = [1,Ek]# def innerL(i, oS):#     Ei = calcEk(oS, i)#     if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):#         j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand#         alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();#         if (oS.labelMat[i] != oS.labelMat[j]):#             L = max(0, oS.alphas[j] - oS.alphas[i])#             H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])#         else:#             L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)#             H = min(oS.C, oS.alphas[j] + oS.alphas[i])#         if L==H: print "L==H"; return 0#         eta = 2.0 * oS.X[i,:] * oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T #changed for kernel#         if eta >= 0: print "eta>=0"; return 0#         oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta#         oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)#         updateEk(oS, j) #added this for the Ecache#         if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0#         oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j#         updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction#         b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T#         b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T#         if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1#         elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2#         else: oS.b = (b1 + b2)/2.0#         return 1#     else: return 0def innerL(i, oS):    Ei = calcEk(oS, i)    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();        if (oS.labelMat[i] != oS.labelMat[j]):            L = max(0, oS.alphas[j] - oS.alphas[i])            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])        else:            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)            H = min(oS.C, oS.alphas[j] + oS.alphas[i])        if L==H: print "L==H"; return 0        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel        if eta >= 0: print "eta>=0"; return 0        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)        updateEk(oS, j) #added this for the Ecache        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2        else: oS.b = (b1 + b2)/2.0        return 1    else: return 0def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO    # oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)#改动    iter = 0    entireSet = True; alphaPairsChanged = 0    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):        alphaPairsChanged = 0        if entireSet:   #go over all            for i in range(oS.m):                alphaPairsChanged += innerL(i,oS)                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)            iter += 1        else:#go over non-bound (railed) alphas            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]            for i in nonBoundIs:                alphaPairsChanged += innerL(i,oS)                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)            iter += 1        if entireSet: entireSet = False #toggle entire set loop        elif (alphaPairsChanged == 0): entireSet = True        print "iteration number: %d" % iter    return oS.b,oS.alphasdef calcWs(alphas,dataArr,classLabels):    X = mat(dataArr); labelMat = mat(classLabels).transpose()    m,n = shape(X)    w = zeros((n,1))    for i in range(m):        w += np.multiply(alphas[i]*labelMat[i],X[i,:].T)    return wdef testRbf(k1=1.3):    dataArr,labelArr = loadDataSet('testSetRBF.txt')    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    svInd=nonzero(alphas.A>0)[0]    sVs=datMat[svInd] #get matrix of only support vectors    labelSV = labelMat[svInd];    print "there are %d Support Vectors" % shape(sVs)[0]    m,n = shape(datMat)    errorCount = 0    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b        if np.sign(predict)!=np.sign(labelArr[i]): errorCount += 1    print "the training error rate is: %f" % (float(errorCount)/m)    dataArr,labelArr = loadDataSet('testSetRBF2.txt')    errorCount = 0    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    m,n = shape(datMat)    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b        if np.sign(predict)!=np.sign(labelArr[i]): errorCount += 1    print "the test error rate is: %f" % (float(errorCount)/m)# print testRbf()def img2vector(filename):    returnVect = zeros((1,1024))    fr = open(filename)    for i in range(32):        lineStr = fr.readline()        for j in range(32):            returnVect[0,32*i+j] = int(lineStr[j])    return returnVectdef loadImages(dirName):    from os import listdir    hwLabels = []    trainingFileList = listdir(dirName)           #load the training set    m = len(trainingFileList)    trainingMat = zeros((m,1024))    for i in range(m):        fileNameStr = trainingFileList[i]        fileStr = fileNameStr.split('.')[0]     #take off .txt        classNumStr = int(fileStr.split('_')[0])        if classNumStr == 9: hwLabels.append(-1)        else: hwLabels.append(1)        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))    return trainingMat, hwLabelsdef testDigits(kTup=('rbf', 10)):    dataArr,labelArr = loadImages('trainingDigits')    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    svInd=nonzero(alphas.A>0)[0]    sVs=datMat[svInd]    labelSV = labelMat[svInd];    print "there are %d Support Vectors" % shape(sVs)[0]    m,n = shape(datMat)    errorCount = 0    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b        if np.sign(predict)!=np.sign(labelArr[i]): errorCount += 1    print "the training error rate is: %f" % (float(errorCount)/m)    dataArr,labelArr = loadImages('testDigits')    errorCount = 0    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    m,n = shape(datMat)    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b        if np.sign(predict)!=np.sign(labelArr[i]): errorCount += 1    print "the test error rate is: %f" % (float(errorCount)/m)print testDigits(('rbf',20))# dataArr, labelArr = loadDataSet('testSet.txt')# b, alphas = smoP(dataArr, labelArr, 0.6, 0.001, 40)# ws=calcWs(alphas,dataArr,labelArr)# datMat=mat(dataArr)# print(datMat[0]*mat(ws)+b)# print labelArr[0]# print ws# # print dataArr# print b# print alphas# # print shape(alphas[alphas > 0])endTime = datetime.datetime.now()last = endTime - startTimeprint last


0 0
原创粉丝点击