caffe利用caffenet训练自己的图片数据

来源:互联网 发布:增广矩阵 编辑:程序博客网 时间:2024/05/30 23:50

在win7上编译并运行了测试之后,免不了要跑一下自己的数据,很多同学都写过这个题目,但是自己去运用发现还是有些不爽,这里就自己记录下,自己跑数据的时候的流程,权当给自己的记录,如果别人能用的上当然更让我高兴。

1 目标

这里用的是caffe的模拟12年那篇惊世骇俗的作品的网络,ImageNet Classification with Deep Convolutional Neural Networks当然如果自己进行修改,针对自己的图片数据而言的话,可能会有更不错的效果。

2 流程记录


1〉首先要解决的就是自己的目录,我的caffe根目录是M:\caffe-windows\caffe

2〉在根目录建立一个文件夹mytest 用来存放自己的网络模型和解决方案



两个脚本分别是计算均值(重复了),以及训练和测试程序的,solver自然是解决方案,train_val.prototxt是训练和测试使用的网路结构。

3〉在/data/建立一个文件夹mydata 用来存放自己的图片样本

这里我 又建立了 train 和 val两个子文件夹存放训练样本和交换区样本


如图:

ps:其中有我的脚本分别是用来生成lmdb和计算均值的

4〉首先我们生成第二幅图的lmdb数据库

SET GLOG_logtostderr=1
..\..\Build\x64\Debug\convert_imageset.exe train\ train.txt my_train_lmdb 0
pause

保存上述代码为bat即可,可以使用相对路径,这段脚本是生成train的lmdb

val也需要,我们可以根据上述改写

SET GLOG_logtostderr=1
..\..\Build\x64\Debug\convert_imageset.exe val\ val.txt my_val_lmdb 0
pause

5〉生成均值

SET GLOG_logtostderr=1
..\..\Build\x64\Debug\compute_image_mean.exe my_train_lmdb my_mean.binaryproto
pause

以上脚本的最后一组词都是生成文件的名称

6〉准备train_val.prototxt

在mytest文件夹下直接写入

name: "CaffeNet"
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "../data/mydata/my_mean.binaryproto"
  }
  data_param {
    source: "M:/caffe-windows/caffe/data/mydata/my_train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "../data/mydata/my_mean.binaryproto"
  }
  data_param {
    source: "M:/caffe-windows/caffe/data/mydata/my_val_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "norm1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "norm2"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc8"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 1000
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}
这里网络我并未做调整,如果你用的是leveldb,需要改变我写的蓝色的部分。

7〉编写解决方案solver.prototxt

这是从model下copy过来并修改的,其实就是caffe给的例子。

net: "M:/caffe-windows/caffe/mytest/train_val.prototxt"
test_iter: 1000
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "M:/caffe-windows/caffe/mytest/mynet_train"
solver_mode: GPU


8〉准备运行的程序mytest.bat

LOG=log/train-`date +%Y-%m-%d-%H-%M-%S`.log
..\Build\x64\Debug\caffe.exe train --solver solver.prototxt
pause

9〉顺序如下

依次运行

1转换lmdb

2计算均值

3运行caffe

可看到下图




说明你的配置是无误的,各位就等待看结果吧。

0 0
原创粉丝点击