关于卡尔曼滤波本质解释和公式推到

来源:互联网 发布:淘宝怎么买烟2017 编辑:程序博客网 时间:2024/05/17 16:47

转载:关于卡尔曼滤波、Kalman Filter(卡尔曼滤波)的推导、卡尔曼滤波小结、卡尔曼滤波器的介绍


一、

      卡尔曼滤波本来是控制系统课上学的,当时就没学明白,也蒙混过关了,以为以后也不用再见到它了,可惜没这么容易,后来学计算机视觉和图像处理,发现用它的地方更多了,没办法的时候只好耐心学习和理解了。一直很想把学习的过程记录一下,让大家少走弯路,可惜总也没时间和机会,直到今天。。。

      我一直有一个愿望,就是把抽象的理论具体化,用最直白的方式告诉大家--不提一个生涩的词,不写一个数学公式,像讲故事一样先把道理说明白,需要知道细节的同学可以自己去查所有需要知道的一切。因为学习的过程告诉我,最难的其实是最初和这个理论和应用背景亲和的过程--这些理论它究竟是做什么的,又是怎么做到的。可惜我们能看到的关于这些理论的资料大多数都是公式的堆砌并且假定我们明白许多“基本的道理”,其实这些“基本的道理”往往是我们最难想象和超越的。以卡尔曼滤波为例,让我们尝试一种不同的学习方法。

相信所有学习卡尔曼滤波的同学首先接触的都是状态方程和观测方程,学过控制系统的同学可能不陌生,否则,先被那两个看起来好深奥的公式给吓跑了,关键是还不知道他们究竟是干什么的,什么是状态,什么是观测。。。。。。如果再看到后面的一大串递归推导增益,实在很晕很晕,更糟糕的是还没整明白的时候就已经知道卡尔曼滤波其实已经不够使了,需要extended kalmanfilter 和particle filter了。。。

其实我们完全不用理会这些公式。先来看看究竟卡尔曼滤波是做什么的,理解了卡尔曼滤波,下面的就顺其自然了。

用一句最简单的话来说,卡尔曼滤波是来帮助我们做测量的,大家一定不明白测量干嘛搞那么复杂?测量长度拿个尺子比一下,测量温度拿温度表测一下不就完了嘛。的确如此,如果你要测量的东西很容易测准确,没有什么随机干扰,那真的不需要劳驾卡尔曼先生。但在有的时候,我们的测量因为随机干扰,无法准确得到,卡尔曼先生就给我们想了个办法,让我们在干扰为高斯分布的情况下,得到的测量均方误差最小,也就是测量值扰动最小,看起来最平滑。

       还是举例子最容易明白。我最近养了只小兔子,忍不住拿小兔子做个例子嘻嘻。

每天给兔子拔草,看她香甜地吃啊吃地,就忍不住关心一下她的体重增长情况。那么我们就以小兔子的体重作为研究对象吧。假定我每周做一次观察,我有两个办法可以知道兔子的体重,一个是拿体重计来称:或许你有办法一下子就称准兔子的体重(兽医通常都有这办法),但现在为了体现卡尔曼先生理论的魅力,我们假定你的称实在很糟糕,误差很大,或者兔子太调皮,不能老实呆着,弹簧秤因为小兔子的晃动会产生很大误差。尽管有误差,那也是一个不可失去的渠道来得到兔子的体重。还有一个途径是根据书本上的资料,和兔子的年龄,我可以估计一下我的小兔子应该会多重,我们把用称称出来的叫观察量,用资料估计出来的叫估计值,无论是观察值还是估计值显然都是有误差的,假定误差是高斯分布。现在问题就来了,按照书本上说我的兔子该3公斤重,称出来却只有2.5公斤,我究竟该信哪个呢?如果称足够准,兔子足够乖,卡尔曼先生就没有用武之地了呵呵,再强调一下是我们的现状是兔兔不够乖,称还很烂呵呵。在这样恶劣的情景下,卡尔曼先生告诉我们一个办法,仍然可以估计出八九不离十的兔兔体重,这个办法其实也很直白,就是加权平均,把称称出来的结果也就是观测值和按照书本经验估算出来的结果也就是估计值分别加一个权值,再做平均。当然这两个权值加起来是等于一的。也就是说如果你有0.7分相信称出来的体重,那么就只有0.3分相信书上的估计。说到这里大家一定更着急了,究竟该有几分相信书上的,有几分相信我自己称的呢?都怪我的称不争气,没法让我百分一百信赖它,还要根据书上的数据来做调整。好在卡尔曼先生也体会到了我们的苦恼,告诉我们一个办法来决定这个权值,这个办法其实也很直白,就是根据以往的表现来做决定,这其实听起来挺公平的,你以前表现好,我就相信你多一点,权值也就给的高一点,以前表现不好,我就相信你少一点,权值自然给的低一点。那么什么是表现好表现不好呢,表现好意思就是测量结果稳定,方差很小,表现不好就是估计值或观测值不稳定,方差很大。想象你用称称你的哦兔子,第一次1公斤第二次10公斤,第三次5公斤,你会相信你的称吗,但是如果第一次3公斤第二次3.2公斤,第三次2.8公斤,自然我就相信它多一点,给它一个大的权值了。

有了这个权值,下面的事情就很好办了。很显然卡尔曼先生是利用多次观察和估计来达到目的的,我们也只能一步一步地调整我们的观察和估计值,来渐渐达到准确的测量,所以整个算法是递归的,需要多次重复调整的。调整的过程也很简单,就是把实测值(称出来的体重)和估计值(书上得来的体重)比较一下,如果估计值比测量值小,那就把估计值加上他们之间的偏差作为新的估计值,当然前面要加个系数,就是我们前面说的加权系数,这个地方我要写个公式,因为很简单就能说明白

      比如我们的观查值是Z,估计值是X, 那么新的估计值就应该是 Xnew  =  X  + K ( Z-X),从这个公式可以看到,如果X估计小了,那么新的估计值会加上一个量K ( Z-X), 如果估计值大了,大过Z了,那么新的估计值就会减去一个量K ( Z-X),这就保证新的估计值一定比现在的准确,一次一次递归下去就会越来越准却了,当然这里面很有作用的也是这个K,也就是我们前面说的权值,书上都把他叫卡尔曼增益。。。(Xnew  =  X  + K ( Z-X) = X ×(1-K) + KZ ,也就是说估计值X的权值是1-k,而观察值Z的权值是k,究竟k 取多大,全看估计值和观察值以前的表现,也就是他们的方差情况了)

发现把一个问题讲明白还真不是件容易的事情,谁听明白了我佩服谁,因为我已经把自己讲糊涂了哈

     顺便就把extended kalman filter和particle filter提一下,因为高斯模型有时不适用,于是有了extended kalman filter,而particle filter是用于多个对象的,比如除了兔子我还有只猫,他们的体重有一个联合概率模型,每一个对象就是一个particle。无论是卡尔曼滤波还是particle滤波,都是概率分布传递的过程,卡尔曼传递的是高斯分布,particle filter 传递的是高斯混合分布,每一个峰代表一个动物在我们的例子。

二、

所谓滤波,实际上是要去掉自己不想要的信号,保留想要的部分。一般来说,是把过程中的噪声去掉。

卡尔曼滤波的默认假定是,世界充满噪声,任何测量结果都有噪声,状态转移过程会有噪声,你想知道系统的真实值么?玩儿蛋去吧。

卡尔曼滤波另一个重要假定模型是这样的,一个系统会处在各种不同的状态,并且会在状态之间转化来转化去。但是呢,倒霉的是我们谁也不知道该系统当前到底是在什么状态;但是呢,幸运的是我们可以通过测量的结果猜测到系统当前在一个什么状态。

那啥叫状态呢?例如系统的速度,加速度,温度,脑残度都算。离散系统的话,我们可以假设一个黑盒,黑盒里有许多颜色的灯(红橙黄绿青蓝紫),同时只能有一个颜色在亮着,ok,哪个灯在亮就是当前状态。

 

下面就是建模:

z_t = H*x_t + v_t;   (1)

x_t = A*x_(t-1) + B*u_(t-1) + w_(t-1);  (2)

初看起这俩式子来,我也头大,不过稍微分析一下也不太难。x_t是t时刻系统所在状态,z_t是所谓观测值,u_t是系统控制变量(已知,但我做的领域一般用不着),w_t , v_t都是噪声。 

那么式子(1)就是想说,观测值和系统状态的关系: 如果你看到种子发芽了,那么它的状态就是刚出生;如果你看到它开始长叶儿了,那状态就叫生长期;如果丫开花了,就叫啥啥期;如果结果了,就叫成熟期;如果蔫儿了,就叫嗝屁期。 

哦,对了,个人理解一下,以上公式限定为了线性系统,传说中卡尔曼滤波是线性的,来源就在这里了,谁叫你是矩阵乘向量呢,你要是写成f(x_t),那有可能就是非线性的了。

那么式子(2)就是说,前一时刻状态和下一时刻状态之间的关系。我在这里卡了好久,总是以为丫是马尔科夫过程,所以就完全无法理解A这个系数是凭啥得来的。其实,就是一个固定的转移方程,该方程完全没有概率问题。

所 以!以上式子中,固定下来的是H, A, B,这三个矩阵千年不变,万年不变,并且是事先设定好的,全都已知。未知的话....你自己编一个模型吧。 那么w_t,v_t 在这里限定为两个高斯白噪声N(0, Q)和N(0, R)。 哦,对,这里要记得,Q,R都tm是协方差矩阵啊,因为,系统状态和观测值都是向量。我对协方差可郁闷可郁闷了。这里提一句,我就完全无法理解协方差想表达什么,为什么俩随机变量独立,协方差一定为0,虽然我也知道怎么推导,但就是不能直观理解之,如果有人知道,还烦请告知。

那 继续扯淡。卡尔曼滤波,本质是想要预测下一步的观测值,或者实时监控一下系统所在状态。但一般在我这个领域,大家还都是在玩儿预测,那咱就从预测角度分 析。OK,直觉上,给定上一个位置的状态x_(t-1),式子(2)足够了。但是,回到开始的默认假设,式子(2)得到的结果x^-_t那是各种不准确 啊。不准确怎么办?那就去看观测值呗,于是得到观测值z_t,但是观测值也不准确唉,那怎么办?当当当当,卡尔曼告诉我们一个灰常牛B的事情,一个相对准 确的系统值具有如下结构:

x&_t = x&-_t + K( z_t - H*x_(t-1) );  (3)

提 一下,这里" & "表示估计值," - "表示是用前面式子算出来的估计值,不带" - "表示是最后的估计值。 (3)这个式子是想说,你不是式子估计和观测值都不准么,那么你把他俩加个权,求个和,那就可能更准确了。啥?你说这个式子不像加权?你把丫拆了,倒腾倒 腾不就像了。 所以,最牛B就牛B在了这个“K”,传说中的卡尔曼增益。 这个K怎么得到的?我也不知道。 文章说法是,定义误差 e_t = x_t - x&_t ,P_t为此误差的协方差矩阵,目的是使这个误差协方差矩阵最小化,把(3)代过去,于是折腾来折腾去,再求个导数为0,解得K,这个关键值的算法:

K = P-_t * H^T * ( H * P-_t * H^T + R) ^(-1);  (4)

哦,对了,另外注意一点,从此以后,我们就都在估计上做文章了,你只要记得,咱永远看不到真实值就行了,于是我们的式子里不是带"&"就是带"-"。

那么式子(4)就是在说,你丫这么着就把K求出来了。于是,问题就变成了这个P-_t怎么个求法。

说到这里,传说中的卡尔曼滤波就算讲完了。神马?你说P-_k还没求呢。是啊,卡尔曼滤波一共就俩需要求的玩意儿,还都tm是迭代求解,一个就是这个P-_t,另一个就是状态x-_t。你随便给个初始值,然后就迭着吧。

言归正传,我还得给出迭代的公式:

x-_t = A * x&_(t-1) + B * u_(t-1);  (5)

P-_t = A * P_(t-1) * A^T + Q;    (6)

大家一定别搞混Q和R谁是哪个公式冒出来的啊。 另外严重关切一下这里"-","&"以及不加的关系。 注意到啥没有?对了,(6)式中等号右边的P_(t-1)不带任何符号,嘿嘿,那自然是还差一个公式啦:

P_t = (I - K_t * H ) P-_(t-1);   (7)

大功告成,以上就是传说中的卡尔曼滤波的迭代求解方法,如果你要预测状态呢,就用式子(5)的结果;如果预测观测值呢,就把式子(5)的结果乘个H;如果是监测状态呢,就用式子(3)的结果。

至于一切式子中的推导过程,还有为神马是这样求出来的,咕~~(╯﹏╰)b,本人一概不知。泪奔告退。

 

最 后小注一下,文章指出,如果Q,R是常数,K会收敛,也即P也会收敛到常量。 另外,大家经常诟病卡尔曼滤波都是假定高斯分布,我勒个去,这里的高斯分布到底说谁呢?噪声项?虽然看上去应该是,但我打赌不是。可是其它又都是定值, 唉,头大。我本来就是为了理解这句话才来学习卡尔曼滤波的。 还得慢慢学,继续泪奔 。

PS, 于是,果然,文中提到x_t是一个随机变量,并且在已知z_t的情况下 p(x_t | z_t) 服从N( x&_t, E[(x_t - x&_t)(x_t - x&_t)]),切记切记,这里所说的正态分布,是指已知观测值的情况下,系统状态是一个高斯分布的随机变量。

三、

卡尔曼滤波器的介绍

Introduction to the Kalman Filter

 

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

 

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

 

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

 

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

 

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

 

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

 

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

 

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

 

下面就要言归正传,讨论真正工程系统上的卡尔曼。

 

3    卡尔曼滤波器算法

The Kalman Filter Algorithm

 

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

 

首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:

X(k)=A X(k-1)+B U(k)+W(k)

再加上系统的测量值:

Z(k)=H X(k)+V(k)

上两式子中,X(k)k时刻的系统状态,U(k)k时刻对系统的控制量。AB是系统参数,对于多模型系统,他们为矩阵。Z(k)k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是QR(这里我们假设他们不随系统状态变化而变化)。

 

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

 

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:

X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0

 

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)covariance还没更新。我们用P表示covariance

P(k|k-1)=A P(k-1|k-1) A+Q ……… (2)

(2)中,P(k|k-1)X(k|k-1)对应的covarianceP(k-1|k-1)X(k-1|k-1)对应的covarianceA’表示A的转置矩阵,Q是系统过程的covariance。式子12就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

 

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k)

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

其中Kg为卡尔曼增益(Kalman Gain)

Kg(k)= P(k|k-1) H / (H P(k|k-1) H + R) ……… (4)

 

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)covariance

P(k|k)=I-Kg(k) HP(k|k-1) ……… (5)

其中1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)P(k-1|k-1)。这样,算法就可以自回归的运算下去。

 

卡尔曼滤波器的原理基本描述了,式子12345就是他的个基本公式。根据这5个公式,可以很容易的实现计算机的程序

四、公式推导




0 0
原创粉丝点击