JDK源码学习(1)-HashMap源码分析,HashMap与HashTable的差别

来源:互联网 发布:颐 文学网络 编辑:程序博客网 时间:2024/06/05 04:30

Hashtable是HashMap的线程安全版本,它的实现和HashMap实现基本一致,除了它不能包含null值的key和value,并且它在计算hash值和数组索引值的方式要稍微简单一些。
Hashtable线程安全实现方式是将所有方法都标记成synchronized,但这样加锁的粒度大,容易引起一些性能问题,所以目使用java.concurrent.ConcurrentHashMap类性能更佳

在JDK1.7之后,HashMap和HashTable的哈希函数都一样了,但由hash值转换成表索引的方式不一样:

  • HashMap使用&位操作 : h & (length-1);
  • HashTable使用取余操作 : (hash & 0x7FFFFFFF) % tab.length;

HashMap源码如下:

package java.util;  import java.io.*;  public class HashMap<K,V>      extends AbstractMap<K,V>      implements Map<K,V>, Cloneable, Serializable  {      /*         HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。         容量是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。         加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。         当哈希表中的条目数超出了加载因子与当前容量的乘积时,         则要对该哈希表进行 rehash 操作(即重建内部数据结构),         从而哈希表将具有大约两倍的桶数。         加载因子默认值为0.75,默认哈希表容量为16    */      //初始化容量16 hashMap的容量必须是2的指数倍        Hashtable是11    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;     //最大容量2的30次方      static final int MAXIMUM_CAPACITY = 1 << 30;      //默认加载因子默认的平衡因子为0.75,这是权衡了时间复杂度与空间复杂度之后的最好取值(JDK说是最好的),过高的因子会降低存储空间但是查找(lookup,包括HashMap中的put与get方法)的时间就会增加。    static final float DEFAULT_LOAD_FACTOR = 0.75f;      //用来存储键值对的Entry数组,用于设置刚刚初始化的HashMap对象,用来减少存储空间      static final Entry<?,?>[] EMPTY_TABLE = {};      //大小必须是2的倍数      transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;      //存储的键值对的数目      transient int size;      //阈值,当size超过threshold时,table将会扩容.      //threshold = capacity * loadFactor      int threshold;      //加载因子          final float loadFactor;      //修改次数,用于检查线程是否同步      transient int modCount;         //默认的阀值      static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;      private static class Holder {                  static final int ALTERNATIVE_HASHING_THRESHOLD;          static {              //获取jdk内置的阀值              String altThreshold = java.security.AccessController.doPrivileged(                  new sun.security.action.GetPropertyAction(                      "jdk.map.althashing.threshold"));              int threshold;              try {                  //设置当前阀值                  threshold = (null != altThreshold)                          ? Integer.parseInt(altThreshold)                          : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;                  // disable alternative hashing if -1                  if (threshold == -1) {                      threshold = Integer.MAX_VALUE;                  }                  if (threshold < 0) {                      throw new IllegalArgumentException("value must be positive integer.");                  }              } catch(IllegalArgumentException failed) {                  throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);              }              ALTERNATIVE_HASHING_THRESHOLD = threshold;          }      }      //使用初始化容量和加载因子初始化HashMap      public HashMap(int initialCapacity, float loadFactor) {          if (initialCapacity < 0)              throw new IllegalArgumentException("Illegal initial capacity: " +                                                 initialCapacity);          if (initialCapacity > MAXIMUM_CAPACITY)              initialCapacity = MAXIMUM_CAPACITY;          if (loadFactor <= 0 || Float.isNaN(loadFactor))              throw new IllegalArgumentException("Illegal load factor: " +                                                 loadFactor);          this.loadFactor = loadFactor;          threshold = initialCapacity;          init();      }      public HashMap(int initialCapacity) {          this(initialCapacity, DEFAULT_LOAD_FACTOR);      }      public HashMap() {          this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);      }      /*      * Constructs a new HashMap with the same mappings as the      * specified Map.  The HashMap is created with      * default load factor (0.75) and an initial capacity sufficient to      * hold the mappings in the specified Map.     */      public HashMap(Map<? extends K, ? extends V> m) {          this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,                        DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);          inflateTable(threshold);          putAllForCreate(m);      }      /**      * A randomizing value associated with this instance that is applied to      * hash code of keys to make hash collisions harder to find.      If 0 then alternative hashing is disabled.      */      transient int hashSeed = 0;      //工具函数,将number扩展成2的倍数      private static int roundUpToPowerOf2(int number) {          // assert number >= 0 : "number must be non-negative";          int rounded = number >= MAXIMUM_CAPACITY                  ? MAXIMUM_CAPACITY                  : (rounded = Integer.highestOneBit(number)) != 0                      ? (Integer.bitCount(number) > 1) ? rounded << 1 : rounded                      : 1;          return rounded;      }      //将表格大小扩展到toSize      private void inflateTable(int toSize) {          // Find a power of 2 >= toSize          int capacity = roundUpToPowerOf2(toSize);          //重新设置阀值          threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);          //重新设置table          table = new Entry[capacity];          //根据capacity初始化hashSeed          initHashSeedAsNeeded(capacity);      }      // internal utilities      void init() {      }      /**      * Initialize the hashing mask value. We defer initialization until we      * really need it.      */      final boolean initHashSeedAsNeeded(int capacity) {          boolean currentAltHashing = hashSeed != 0;          //根据系统函数得到一个hash          boolean useAltHashing = sun.misc.VM.isBooted() &&                  (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);          boolean switching = currentAltHashing ^ useAltHashing;          //如果hashSeed初始化为0则跳过switching          //否则使用系统函数得到新的hashSeed          if (switching) {              hashSeed = useAltHashing                  ? sun.misc.Hashing.randomHashSeed(this)                  : 0;          }          return switching;      }      /*         哈希算法的核心:哈希函数      * Retrieve object hash code and applies a supplemental hash function to the      * result hash, which defends against poor quality hash functions.  This is      * critical because HashMap uses power-of-two length hash tables, that      * otherwise encounter collisions for hashCodes that do not differ      * in lower bits. Note: Null keys always map to hash 0, thus index 0.      */       */      final int hash(Object k) {          int h = hashSeed;          //通过hashSeed初始化的值的不同来选择不同的hash方式          if (0 != h && k instanceof String) {   //String类采用不同的hash函数            return sun.misc.Hashing.stringHash32((String) k);          }            h ^= k.hashCode();            h ^= (h >>> 20) ^ (h >>> 12);          return h ^ (h >>> 7) ^ (h >>> 4);      }      //Returns index for hash code h.通过得到的hash值来确定它在table中的位置      static int indexFor(int h, int length) {          // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";          return h & (length-1);      }  

上面的hash()方法和indexFor()是hashMap当中的一个重点。

看到这么多位操作,是不是觉得晕头转向了呢,还是搞清楚原理就行了,毕竟位操作速度是很快的,不能因为不好理解就不用了。
在哈希表容量(也就是buckets或slots大小)为length的情况下,为了使每个key都能在冲突最小的情况下映射到[0,length)(注意是左闭右开区间)的索引(index)内,一般有两种做法:

  • 方法1:让length为素数,然后用hashCode(key) mod length的方法得到索引
  • 方法2:让length为2的指数倍,然后用hashCode(key) & (length-1)的方法得到索引

HashTable用的是方法1,HashMap用的是方法2。重点说说方法2的情况,方法2其实也比较好理解:
因为length为2的指数倍,所以length-1所对应的二进制位都为1,然后在与hashCode(key)做与运算,即可得到[0,length)内的索引。但是这里有个问题,如果hashCode(key)的大于length的值,而且hashCode(key)的二进制位的低位变化不大,那么冲突就会很多,举个例子:
Java中对象的哈希值都32位整数,而HashMap默认大小为16,那么有两个对象那么的哈希值分别为:0xABAB0000与0xBABA0000,它们的后几位都是一样,那么与16异或后得到结果应该也是一样的,也就是产生了冲突。造成冲突的原因关键在于16限制了只能用低位来计算,高位直接舍弃了,所以我们需要额外的哈希函数而不只是简单的对象的hashCode方法了。具体来说,就是HashMap中hash函数干的事了。

继续分析源码:

    public int size() {          return size;      }      public boolean isEmpty() {          return size == 0;      }      public V get(Object key) {          if (key == null)              return getForNullKey();          Entry<K,V> entry = getEntry(key);//查看调用函数,在下面          return null == entry ? null : entry.getValue();      }      private V getForNullKey() {          if (size == 0) {              return null;          }          for (Entry<K,V> e = table[0]; e != null; e = e.next) {              if (e.key == null)                  return e.value;          }          return null;      }      public boolean containsKey(Object key) {          return getEntry(key) != null;      }      final Entry<K,V> getEntry(Object key) {          if (size == 0) {              return null;          }          //通过key的hash值确定table下标(null对应下标0)          int hash = (key == null) ? 0 : hash(key);          //indexFor() = h & (length-1) = hash&(table.length-1)          for (Entry<K,V> e = table[indexFor(hash, table.length)];               e != null;               e = e.next)          //对冲突的处理办法是将线性探查,即将元素放到冲突位置的下一个可用位置上          {              Object k;              /*注意:因为元素可能不是刚好存在它对应hash值得下一个位置                 (如果该位置之前有元素,则要放在下两个的位置,以此类推)             */              if (e.hash == hash &&                  ((k = e.key) == key || (key != null && key.equals(k))))                  //所以不仅要判断hash还要判断key(因为不同的key可能有相同的hash值)                  return e;          }          return null;      }       /*      * 1. 通过key的hash值确定table下标      * 2. 查找table下标,如果key存在则更新对应的value      * 3. 如果key不存在则调用addEntry()方法      */      public V put(K key, V value) {          if (table == EMPTY_TABLE) {          //初始化存储表空间              inflateTable(threshold);          }          if (key == null)              return putForNullKey(value);          int hash = hash(key);          int i = indexFor(hash, table.length);          /*             注意:             我不断的寻找,hash值对应位置之后的可用位置在哪里         */          for (Entry<K,V> e = table[i]; e != null; e = e.next) {              Object k;              if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {                  V oldValue = e.value;                  e.value = value;                  e.recordAccess(this);                  return oldValue;              }          }          //上面的循环结束表示当前的key不存在与表中,需要另外增加          modCount++;          addEntry(hash, key, value, i);//函数在下面          return null;      }      /*         为减少篇幅,删除了一些功能实现类似的方法         大家可以自行阅读分析       */       /**      * Transfers all entries from current table to newTable.      */      void transfer(Entry[] newTable, boolean rehash) {          int newCapacity = newTable.length;          for (Entry<K,V> e : table) {              while(null != e) {                  Entry<K,V> next = e.next;                  //是否重新进行hash计算                  if (rehash) {                      e.hash = null == e.key ? 0 : hash(e.key);                  }                  int i = indexFor(e.hash, newCapacity);                  e.next = newTable[i];                  newTable[i] = e;                  e = next;              }          }      }      //扩展到指定的大小      void resize(int newCapacity) {          Entry[] oldTable = table;          int oldCapacity = oldTable.length;          if (oldCapacity == MAXIMUM_CAPACITY) {              threshold = Integer.MAX_VALUE;              return;          }          Entry[] newTable = new Entry[newCapacity];          //重新hash          transfer(newTable, initHashSeedAsNeeded(newCapacity));          table = newTable;          threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);      }      //Entry类就是一个简单的键值对的类      static class Entry<K,V> implements Map.Entry<K,V> {          final K key;          V value;          Entry<K,V> next;//这是一种类似指针的东西          int hash;//还要存放hash值          /*         下面是一些十分基本的构造函数以及get,set方法         */          Entry(int h, K k, V v, Entry<K,V> n) {              value = v;              next = n;              key = k;              hash = h;          }          public final K getKey() {              return key;          }          public final V getValue() {              return value;          }          public final V setValue(V newValue) {              V oldValue = value;              value = newValue;              return oldValue;          }          //必须要key和value都一样才equals          public final boolean equals(Object o) {              if (!(o instanceof Map.Entry))                  return false;              Map.Entry e = (Map.Entry)o;              Object k1 = getKey();              Object k2 = e.getKey();              if (k1 == k2 || (k1 != null && k1.equals(k2))) {                  Object v1 = getValue();                  Object v2 = e.getValue();                  if (v1 == v2 || (v1 != null && v1.equals(v2)))                      return true;              }              return false;          }          public final int hashCode() {              return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());          }          public final String toString() {              return getKey() + "=" + getValue();          }          /**          * This method is invoked whenever the value in an entry is          * overwritten by an invocation of put(k,v) for a key k that's already          * in the HashMap.          */          void recordAccess(HashMap<K,V> m) {          }          /**          * This method is invoked whenever the entry is          * removed from the table.          */          void recordRemoval(HashMap<K,V> m) {          }      }       //根据需要,可能要扩容       //由于它由Put函数调用,调用之前已经确定表中没有key的记录       //addEntry默认当前表中没有指定key的记录,直接增加记录      void addEntry(int hash, K key, V value, int bucketIndex) {          //计算存放位置          if ((size >= threshold) && (null != table[bucketIndex])) {              resize(2 * table.length);//将容量翻倍              hash = (null != key) ? hash(key) : 0;              //寻找指定hash值对应的存放位置              bucketIndex = indexFor(hash, table.length);          }          createEntry(hash, key, value, bucketIndex);      }       //由于默认没有key的记录,所以直接增加      void createEntry(int hash, K key, V value, int bucketIndex) {          Entry<K,V> e = table[bucketIndex];          table[bucketIndex] = new Entry<>(hash, key, value, e);          size++;      }      //类似于Entry数组的迭代器,主要是对table进行操作      private abstract class HashIterator<E> implements Iterator<E> {          Entry<K,V> next;        // next entry to return          int expectedModCount;   // For fast-fail          int index;              // current slot          Entry<K,V> current;     // current entry          HashIterator() {              expectedModCount = modCount;              if (size > 0) { // advance to first entry                  Entry[] t = table;                  while (index < t.length && (next = t[index++]) == null)                      ;              }          }          public final boolean hasNext() {              return next != null;          }          final Entry<K,V> nextEntry() {              if (modCount != expectedModCount)                  throw new ConcurrentModificationException();              Entry<K,V> e = next;              if (e == null)                  throw new NoSuchElementException();              if ((next = e.next) == null) {                  Entry[] t = table;                  while (index < t.length && (next = t[index++]) == null)                      ;              }              current = e;              return e;          }          public void remove() {              if (current == null)                  throw new IllegalStateException();              if (modCount != expectedModCount)                  throw new ConcurrentModificationException();              Object k = current.key;              current = null;              HashMap.this.removeEntryForKey(k);              expectedModCount = modCount;          }      }      private final class ValueIterator extends HashIterator<V> {          public V next() {              return nextEntry().value;          }      }      private final class KeyIterator extends HashIterator<K> {          public K next() {              return nextEntry().getKey();          }      }      private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {          public Map.Entry<K,V> next() {              return nextEntry();          }      }      // Subclass overrides these to alter behavior of views' iterator() method      Iterator<K> newKeyIterator()   {          return new KeyIterator();      }      Iterator<V> newValueIterator()   {          return new ValueIterator();      }      Iterator<Map.Entry<K,V>> newEntryIterator()   {          return new EntryIterator();      }      // Views      private transient Set<Map.Entry<K,V>> entrySet = null;      /**      * Returns a link Set view of the keys contained in this map.      */      public Set<K> keySet() {          Set<K> ks = keySet;          return (ks != null ? ks : (keySet = new KeySet()));      }      private final class KeySet extends AbstractSet<K> {          public Iterator<K> iterator() {              return newKeyIterator();          }          public int size() {              return size;          }          public boolean contains(Object o) {              return containsKey(o);          }          public boolean remove(Object o) {              return HashMap.this.removeEntryForKey(o) != null;          }          public void clear() {              HashMap.this.clear();          }      }      /**      * Returns a Collection view of the values contained in this map.      */      public Collection<V> values() {          Collection<V> vs = values;          return (vs != null ? vs : (values = new Values()));      }      private final class Values extends AbstractCollection<V> {          public Iterator<V> iterator() {              return newValueIterator();          }          public int size() {              return size;          }          public boolean contains(Object o) {              return containsValue(o);          }          public void clear() {              HashMap.this.clear();          }      }      /**         return a set view of the mappings contained in this map      */      public Set<Map.Entry<K,V>> entrySet() {          return entrySet0();      }      private Set<Map.Entry<K,V>> entrySet0() {          Set<Map.Entry<K,V>> es = entrySet;          return es != null ? es : (entrySet = new EntrySet());      }      private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {          public Iterator<Map.Entry<K,V>> iterator() {              return newEntryIterator();          }          public boolean contains(Object o) {              if (!(o instanceof Map.Entry))                  return false;              Map.Entry<K,V> e = (Map.Entry<K,V>) o;              Entry<K,V> candidate = getEntry(e.getKey());              return candidate != null && candidate.equals(e);          }          public boolean remove(Object o) {              return removeMapping(o) != null;          }          public int size() {              return size;          }          public void clear() {              HashMap.this.clear();          }      }  }  

其他文章: JDK源码学习(2)-TreeMap源码分析
深入Java集合学习系列:HashMap的实现原理

1 0
原创粉丝点击