定理

来源:互联网 发布:网络用户管理系统 编辑:程序博客网 时间:2024/04/28 22:15

欧拉定理

编辑

内容

在数论中,欧拉定理,(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,则:

证明

将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数)
我们考虑这么一些数:
m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n)
1)这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定mS更大一些),就有:
mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a与n的最大公因子是1,而xS-xR<n,因而左式不可能被n整除。也就是说这些数中的任意两个都不模n同余,φ(n)个数有φ(n)种余数。
2)这些数除n的余数都与n互质,因为如果余数与n有公因子r,那么a*xi=pn+qr=r(……),a*xi与n不互质,而这是不可能的。那么这些数除n的余数,都在x1,x2,x3……xφ(n)中,因为这是1~n中与n互质的所有数,而余数又小于n.
由1)和2)可知,数m1,m2,m3……mφ(n)(如果将其次序重新排列)必须相应地同余于x1,x2,x3……xφ(n).
故得出:m1*m2*m3……mφ(n)≡x1*x2*x3……xφ(n) (mod n)
或者说a^[φ(n)]*(x1*x2*x3……xφ(n))≡x1*x2*x3……xφ(n)
或者为了方便:K{a^[φ(n)]-1}≡0 ( mod n ) 这里K=x1*x2*x3……xφ(n)。
可知K{a^[φ(n)]-1}被n整除。但K中的因子x1,x2……都与n互质,所以K与n互质。那么a^[φ(n)]-1必须能被n整除,即a^[φ(n)]-1≡0 (mod n),即a^[φ(n)]≡1 (mod n),得证。

费马小定理

 编辑
费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
费马小定理:
a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)
证明这个定理非常简单,由于p是质数,所以有φ(p) = p-1,代入欧拉定理即可证明。推论:对于任意正整数a,有a^p ≡ a (mod p),因为a能被p整除时结论显然成立。

应用

首先看一个基本的例子。令a = 3,n = 5,这两个数是互素的。比5小的正整数中与5互素的数有1、2、3和4,所以φ(5)=4(详情见[欧拉函数])。计算:a^{φ(n)} = 3^4 =81,而81= 80 + 1 Ξ 1 (mod 5)。与定理结果相符。
这个定理可以用来简化幂的模运算。比如计算7^{222}的个位数,实际是求7^{222}被10除的余数。7和10[[互素]],且φ(10)=4。
由欧拉定理知7^4Ξ1(mod 10)。所以7^{222}=(7^4)^55*(7^2)Ξ1^{55}*7^2Ξ49Ξ9 (mod 10)。
关于质数与合数。。。
  质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自     然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数
按照能否被1和自己以外的数整除,正整数被分成三类。       质数(素数),只能够被1和自己整除,如2、3、5、7、11、13、…….      合数,能够被自己和1以外的数整除,如4、6、8、9、10、……,      1,既不是质数,又不是的数(只有1自己)      合数是由两个以上的不同数的乘积构成。可以证明质数与合数都有无穷多个。但是比较起来质数的数目是很少的,而合数是很多、很多的。正整数几乎完全由合数组成,但是质数(素数)却是构成合数的元素(素数的称呼由此而来)。

    


0 0