Java多线程系列--“JUC集合”04之 ConcurrentHashMap

来源:互联网 发布:php构架师是什么 编辑:程序博客网 时间:2024/06/04 17:53

概要

本章是JUC系列的ConcurrentHashMap篇。内容包括:
ConcurrentHashMap介绍
ConcurrentHashMap原理和数据结构
ConcurrentHashMap函数列表
ConcurrentHashMap源码分析(JDK1.7.0_40版本)
ConcurrentHashMap示例

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3498537.html

 

ConcurrentHashMap介绍

ConcurrentHashMap是线程安全的哈希表。HashMap, Hashtable, ConcurrentHashMap之间的关联如下:

 

  HashMap是非线程安全的哈希表,常用于单线程程序中。

  Hashtable是线程安全的哈希表,它是通过synchronized来保证线程安全的;即,多线程通过同一个“对象的同步锁”来实现并发控制。Hashtable在线程竞争激烈时,效率比较低(此时建议使用ConcurrentHashMap)!因为当一个线程访问Hashtable的同步方法时,其它线程就访问Hashtable的同步方法时,可能会进入阻塞状态。

  ConcurrentHashMap是线程安全的哈希表,它是通过“锁分段”来保证线程安全的。ConcurrentHashMap将哈希表分成许多片段(Segment),每一个片段除了保存哈希表之外,本质上也是一个“可重入的互斥锁”(ReentrantLock)。多线程对同一个片段的访问,是互斥的;但是,对于不同片段的访问,却是可以同步进行的。

 

 

关于HashMap,Hashtable以及ReentrantLock的更多内容,可以参考:
1. Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例
2. Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例
3. Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

 

ConcurrentHashMap原理和数据结构

要想搞清ConcurrentHashMap,必须先弄清楚它的数据结构:

  (01) ConcurrentHashMap继承于AbstractMap抽象类。
  (02) Segment是ConcurrentHashMap中的内部类,它就是ConcurrentHashMap中的“锁分段”对应的存储结构。ConcurrentHashMap与Segment是组合关系,1个ConcurrentHashMap对象包含若干个Segment对象。在代码中,这表现为ConcurrentHashMap类中存在“Segment数组”成员。
  (03) Segment类继承于ReentrantLock类,所以Segment本质上是一个可重入的互斥锁。
  (04) HashEntry也是ConcurrentHashMap的内部类,是单向链表节点,存储着key-value键值对。Segment与HashEntry是组合关系,Segment类中存在“HashEntry数组”成员,“HashEntry数组”中的每个HashEntry就是一个单向链表。

  对于多线程访问对一个“哈希表对象”竞争资源,Hashtable是通过一把锁来控制并发;而ConcurrentHashMap则是将哈希表分成许多片段,对于每一个片段分别通过一个互斥锁来控制并发。ConcurrentHashMap对并发的控制更加细腻,它也更加适应于高并发场景!

 

ConcurrentHashMap函数列表

复制代码
// 创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。ConcurrentHashMap()// 创建一个带有指定初始容量、默认加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。ConcurrentHashMap(int initialCapacity)// 创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (16) 的新的空映射。ConcurrentHashMap(int initialCapacity, float loadFactor)// 创建一个带有指定初始容量、加载因子和并发级别的新的空映射。ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)// 构造一个与给定映射具有相同映射关系的新映射。ConcurrentHashMap(Map<? extends K,? extends V> m)// 从该映射中移除所有映射关系void clear()// 一种遗留方法,测试此表中是否有一些与指定值存在映射关系的键。boolean contains(Object value)// 测试指定对象是否为此表中的键。boolean containsKey(Object key)// 如果此映射将一个或多个键映射到指定值,则返回 true。boolean containsValue(Object value)// 返回此表中值的枚举。Enumeration<V> elements()// 返回此映射所包含的映射关系的 Set 视图。Set<Map.Entry<K,V>> entrySet()// 返回指定键所映射到的值,如果此映射不包含该键的映射关系,则返回 null。V get(Object key)// 如果此映射不包含键-值映射关系,则返回 true。boolean isEmpty()// 返回此表中键的枚举。Enumeration<K> keys()// 返回此映射中包含的键的 Set 视图。Set<K> keySet()// 将指定键映射到此表中的指定值。V put(K key, V value)// 将指定映射中所有映射关系复制到此映射中。void putAll(Map<? extends K,? extends V> m)// 如果指定键已经不再与某个值相关联,则将它与给定值关联。V putIfAbsent(K key, V value)// 从此映射中移除键(及其相应的值)。V remove(Object key)// 只有目前将键的条目映射到给定值时,才移除该键的条目。boolean remove(Object key, Object value)// 只有目前将键的条目映射到某一值时,才替换该键的条目。V replace(K key, V value)// 只有目前将键的条目映射到给定值时,才替换该键的条目。boolean replace(K key, V oldValue, V newValue)// 返回此映射中的键-值映射关系数。int size()// 返回此映射中包含的值的 Collection 视图。Collection<V> values()
复制代码

 

ConcurrentHashMap源码分析(JDK1.7.0_40版本)

ConcurrentHashMap.java的完整源码如下:

复制代码
   1 /*   2  * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.   3  *   4  *   5  *   6  *   7  *   8  *   9  *  10  *  11  *  12  *  13  *  14  *  15  *  16  *  17  *  18  *  19  *  20  *  21  *  22  *  23  */  24   25 /*  26  *  27  *  28  *  29  *  30  *  31  * Written by Doug Lea with assistance from members of JCP JSR-166  32  * Expert Group and released to the public domain, as explained at  33  * http://creativecommons.org/publicdomain/zero/1.0/  34  */  35   36 package java.util.concurrent;  37 import java.util.concurrent.locks.*;  38 import java.util.*;  39 import java.io.Serializable;  40 import java.io.IOException;  41 import java.io.ObjectInputStream;  42 import java.io.ObjectOutputStream;  43 import java.io.ObjectStreamField;  44   45 /**  46  * A hash table supporting full concurrency of retrievals and  47  * adjustable expected concurrency for updates. This class obeys the  48  * same functional specification as {@link java.util.Hashtable}, and  49  * includes versions of methods corresponding to each method of  50  * <tt>Hashtable</tt>. However, even though all operations are  51  * thread-safe, retrieval operations do <em>not</em> entail locking,  52  * and there is <em>not</em> any support for locking the entire table  53  * in a way that prevents all access.  This class is fully  54  * interoperable with <tt>Hashtable</tt> in programs that rely on its  55  * thread safety but not on its synchronization details.  56  *  57  * <p> Retrieval operations (including <tt>get</tt>) generally do not  58  * block, so may overlap with update operations (including  59  * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results  60  * of the most recently <em>completed</em> update operations holding  61  * upon their onset.  For aggregate operations such as <tt>putAll</tt>  62  * and <tt>clear</tt>, concurrent retrievals may reflect insertion or  63  * removal of only some entries.  Similarly, Iterators and  64  * Enumerations return elements reflecting the state of the hash table  65  * at some point at or since the creation of the iterator/enumeration.  66  * They do <em>not</em> throw {@link ConcurrentModificationException}.  67  * However, iterators are designed to be used by only one thread at a time.  68  *  69  * <p> The allowed concurrency among update operations is guided by  70  * the optional <tt>concurrencyLevel</tt> constructor argument  71  * (default <tt>16</tt>), which is used as a hint for internal sizing.  The  72  * table is internally partitioned to try to permit the indicated  73  * number of concurrent updates without contention. Because placement  74  * in hash tables is essentially random, the actual concurrency will  75  * vary.  Ideally, you should choose a value to accommodate as many  76  * threads as will ever concurrently modify the table. Using a  77  * significantly higher value than you need can waste space and time,  78  * and a significantly lower value can lead to thread contention. But  79  * overestimates and underestimates within an order of magnitude do  80  * not usually have much noticeable impact. A value of one is  81  * appropriate when it is known that only one thread will modify and  82  * all others will only read. Also, resizing this or any other kind of  83  * hash table is a relatively slow operation, so, when possible, it is  84  * a good idea to provide estimates of expected table sizes in  85  * constructors.  86  *  87  * <p>This class and its views and iterators implement all of the  88  * <em>optional</em> methods of the {@link Map} and {@link Iterator}  89  * interfaces.  90  *  91  * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class  92  * does <em>not</em> allow <tt>null</tt> to be used as a key or value.  93  *  94  * <p>This class is a member of the  95  * <a href="{@docRoot}/../technotes/guides/collections/index.html">  96  * Java Collections Framework</a>.  97  *  98  * @since 1.5  99  * @author Doug Lea 100  * @param <K> the type of keys maintained by this map 101  * @param <V> the type of mapped values 102  */ 103 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V> 104         implements ConcurrentMap<K, V>, Serializable { 105     private static final long serialVersionUID = 7249069246763182397L; 106  107     /* 108      * The basic strategy is to subdivide the table among Segments, 109      * each of which itself is a concurrently readable hash table.  To 110      * reduce footprint, all but one segments are constructed only 111      * when first needed (see ensureSegment). To maintain visibility 112      * in the presence of lazy construction, accesses to segments as 113      * well as elements of segment's table must use volatile access, 114      * which is done via Unsafe within methods segmentAt etc 115      * below. These provide the functionality of AtomicReferenceArrays 116      * but reduce the levels of indirection. Additionally, 117      * volatile-writes of table elements and entry "next" fields 118      * within locked operations use the cheaper "lazySet" forms of 119      * writes (via putOrderedObject) because these writes are always 120      * followed by lock releases that maintain sequential consistency 121      * of table updates. 122      * 123      * Historical note: The previous version of this class relied 124      * heavily on "final" fields, which avoided some volatile reads at 125      * the expense of a large initial footprint.  Some remnants of 126      * that design (including forced construction of segment 0) exist 127      * to ensure serialization compatibility. 128      */ 129  130     /* ---------------- Constants -------------- */ 131  132     /** 133      * The default initial capacity for this table, 134      * used when not otherwise specified in a constructor. 135      */ 136     static final int DEFAULT_INITIAL_CAPACITY = 16; 137  138     /** 139      * The default load factor for this table, used when not 140      * otherwise specified in a constructor. 141      */ 142     static final float DEFAULT_LOAD_FACTOR = 0.75f; 143  144     /** 145      * The default concurrency level for this table, used when not 146      * otherwise specified in a constructor. 147      */ 148     static final int DEFAULT_CONCURRENCY_LEVEL = 16; 149  150     /** 151      * The maximum capacity, used if a higher value is implicitly 152      * specified by either of the constructors with arguments.  MUST 153      * be a power of two <= 1<<30 to ensure that entries are indexable 154      * using ints. 155      */ 156     static final int MAXIMUM_CAPACITY = 1 << 30; 157  158     /** 159      * The minimum capacity for per-segment tables.  Must be a power 160      * of two, at least two to avoid immediate resizing on next use 161      * after lazy construction. 162      */ 163     static final int MIN_SEGMENT_TABLE_CAPACITY = 2; 164  165     /** 166      * The maximum number of segments to allow; used to bound 167      * constructor arguments. Must be power of two less than 1 << 24. 168      */ 169     static final int MAX_SEGMENTS = 1 << 16; // slightly conservative 170  171     /** 172      * Number of unsynchronized retries in size and containsValue 173      * methods before resorting to locking. This is used to avoid 174      * unbounded retries if tables undergo continuous modification 175      * which would make it impossible to obtain an accurate result. 176      */ 177     static final int RETRIES_BEFORE_LOCK = 2; 178  179     /* ---------------- Fields -------------- */ 180  181     /** 182      * holds values which can't be initialized until after VM is booted. 183      */ 184     private static class Holder { 185  186         /** 187         * Enable alternative hashing of String keys? 188         * 189         * <p>Unlike the other hash map implementations we do not implement a 190         * threshold for regulating whether alternative hashing is used for 191         * String keys. Alternative hashing is either enabled for all instances 192         * or disabled for all instances. 193         */ 194         static final boolean ALTERNATIVE_HASHING; 195  196         static { 197             // Use the "threshold" system property even though our threshold 198             // behaviour is "ON" or "OFF". 199             String altThreshold = java.security.AccessController.doPrivileged( 200                 new sun.security.action.GetPropertyAction( 201                     "jdk.map.althashing.threshold")); 202  203             int threshold; 204             try { 205                 threshold = (null != altThreshold) 206                         ? Integer.parseInt(altThreshold) 207                         : Integer.MAX_VALUE; 208  209                 // disable alternative hashing if -1 210                 if (threshold == -1) { 211                     threshold = Integer.MAX_VALUE; 212                 } 213  214                 if (threshold < 0) { 215                     throw new IllegalArgumentException("value must be positive integer."); 216                 } 217             } catch(IllegalArgumentException failed) { 218                 throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed); 219             } 220             ALTERNATIVE_HASHING = threshold <= MAXIMUM_CAPACITY; 221         } 222     } 223  224     /** 225      * A randomizing value associated with this instance that is applied to 226      * hash code of keys to make hash collisions harder to find. 227      */ 228     private transient final int hashSeed = randomHashSeed(this); 229  230     private static int randomHashSeed(ConcurrentHashMap instance) { 231         if (sun.misc.VM.isBooted() && Holder.ALTERNATIVE_HASHING) { 232             return sun.misc.Hashing.randomHashSeed(instance); 233         } 234  235         return 0; 236     } 237  238     /** 239      * Mask value for indexing into segments. The upper bits of a 240      * key's hash code are used to choose the segment. 241      */ 242     final int segmentMask; 243  244     /** 245      * Shift value for indexing within segments. 246      */ 247     final int segmentShift; 248  249     /** 250      * The segments, each of which is a specialized hash table. 251      */ 252     final Segment<K,V>[] segments; 253  254     transient Set<K> keySet; 255     transient Set<Map.Entry<K,V>> entrySet; 256     transient Collection<V> values; 257  258     /** 259      * ConcurrentHashMap list entry. Note that this is never exported 260      * out as a user-visible Map.Entry. 261      */ 262     static final class HashEntry<K,V> { 263         final int hash; 264         final K key; 265         volatile V value; 266         volatile HashEntry<K,V> next; 267  268         HashEntry(int hash, K key, V value, HashEntry<K,V> next) { 269             this.hash = hash; 270             this.key = key; 271             this.value = value; 272             this.next = next; 273         } 274  275         /** 276          * Sets next field with volatile write semantics.  (See above 277          * about use of putOrderedObject.) 278          */ 279         final void setNext(HashEntry<K,V> n) { 280             UNSAFE.putOrderedObject(this, nextOffset, n); 281         } 282  283         // Unsafe mechanics 284         static final sun.misc.Unsafe UNSAFE; 285         static final long nextOffset; 286         static { 287             try { 288                 UNSAFE = sun.misc.Unsafe.getUnsafe(); 289                 Class k = HashEntry.class; 290                 nextOffset = UNSAFE.objectFieldOffset 291                     (k.getDeclaredField("next")); 292             } catch (Exception e) { 293                 throw new Error(e); 294             } 295         } 296     } 297  298     /** 299      * Gets the ith element of given table (if nonnull) with volatile 300      * read semantics. Note: This is manually integrated into a few 301      * performance-sensitive methods to reduce call overhead. 302      */ 303     @SuppressWarnings("unchecked") 304     static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) { 305         return (tab == null) ? null : 306             (HashEntry<K,V>) UNSAFE.getObjectVolatile 307             (tab, ((long)i << TSHIFT) + TBASE); 308     } 309  310     /** 311      * Sets the ith element of given table, with volatile write 312      * semantics. (See above about use of putOrderedObject.) 313      */ 314     static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i, 315                                        HashEntry<K,V> e) { 316         UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e); 317     } 318  319     /** 320      * Applies a supplemental hash function to a given hashCode, which 321      * defends against poor quality hash functions.  This is critical 322      * because ConcurrentHashMap uses power-of-two length hash tables, 323      * that otherwise encounter collisions for hashCodes that do not 324      * differ in lower or upper bits. 325      */ 326     private int hash(Object k) { 327         int h = hashSeed; 328  329         if ((0 != h) && (k instanceof String)) { 330             return sun.misc.Hashing.stringHash32((String) k); 331         } 332  333         h ^= k.hashCode(); 334  335         // Spread bits to regularize both segment and index locations, 336         // using variant of single-word Wang/Jenkins hash. 337         h += (h <<  15) ^ 0xffffcd7d; 338         h ^= (h >>> 10); 339         h += (h <<   3); 340         h ^= (h >>>  6); 341         h += (h <<   2) + (h << 14); 342         return h ^ (h >>> 16); 343     } 344  345     /** 346      * Segments are specialized versions of hash tables.  This 347      * subclasses from ReentrantLock opportunistically, just to 348      * simplify some locking and avoid separate construction. 349      */ 350     static final class Segment<K,V> extends ReentrantLock implements Serializable { 351         /* 352          * Segments maintain a table of entry lists that are always 353          * kept in a consistent state, so can be read (via volatile 354          * reads of segments and tables) without locking.  This 355          * requires replicating nodes when necessary during table 356          * resizing, so the old lists can be traversed by readers 357          * still using old version of table. 358          * 359          * This class defines only mutative methods requiring locking. 360          * Except as noted, the methods of this class perform the 361          * per-segment versions of ConcurrentHashMap methods.  (Other 362          * methods are integrated directly into ConcurrentHashMap 363          * methods.) These mutative methods use a form of controlled 364          * spinning on contention via methods scanAndLock and 365          * scanAndLockForPut. These intersperse tryLocks with 366          * traversals to locate nodes.  The main benefit is to absorb 367          * cache misses (which are very common for hash tables) while 368          * obtaining locks so that traversal is faster once 369          * acquired. We do not actually use the found nodes since they 370          * must be re-acquired under lock anyway to ensure sequential 371          * consistency of updates (and in any case may be undetectably 372          * stale), but they will normally be much faster to re-locate. 373          * Also, scanAndLockForPut speculatively creates a fresh node 374          * to use in put if no node is found. 375          */ 376  377         private static final long serialVersionUID = 2249069246763182397L; 378  379         /** 380          * The maximum number of times to tryLock in a prescan before 381          * possibly blocking on acquire in preparation for a locked 382          * segment operation. On multiprocessors, using a bounded 383          * number of retries maintains cache acquired while locating 384          * nodes. 385          */ 386         static final int MAX_SCAN_RETRIES = 387             Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; 388  389         /** 390          * The per-segment table. Elements are accessed via 391          * entryAt/setEntryAt providing volatile semantics. 392          */ 393         transient volatile HashEntry<K,V>[] table; 394  395         /** 396          * The number of elements. Accessed only either within locks 397          * or among other volatile reads that maintain visibility. 398          */ 399         transient int count; 400  401         /** 402          * The total number of mutative operations in this segment. 403          * Even though this may overflows 32 bits, it provides 404          * sufficient accuracy for stability checks in CHM isEmpty() 405          * and size() methods.  Accessed only either within locks or 406          * among other volatile reads that maintain visibility. 407          */ 408         transient int modCount; 409  410         /** 411          * The table is rehashed when its size exceeds this threshold. 412          * (The value of this field is always <tt>(int)(capacity * 413          * loadFactor)</tt>.) 414          */ 415         transient int threshold; 416  417         /** 418          * The load factor for the hash table.  Even though this value 419          * is same for all segments, it is replicated to avoid needing 420          * links to outer object. 421          * @serial 422          */ 423         final float loadFactor; 424  425         Segment(float lf, int threshold, HashEntry<K,V>[] tab) { 426             this.loadFactor = lf; 427             this.threshold = threshold; 428             this.table = tab; 429         } 430  431         final V put(K key, int hash, V value, boolean onlyIfAbsent) { 432             HashEntry<K,V> node = tryLock() ? null : 433                 scanAndLockForPut(key, hash, value); 434             V oldValue; 435             try { 436                 HashEntry<K,V>[] tab = table; 437                 int index = (tab.length - 1) & hash; 438                 HashEntry<K,V> first = entryAt(tab, index); 439                 for (HashEntry<K,V> e = first;;) { 440                     if (e != null) { 441                         K k; 442                         if ((k = e.key) == key || 443                             (e.hash == hash && key.equals(k))) { 444                             oldValue = e.value; 445                             if (!onlyIfAbsent) { 446                                 e.value = value; 447                                 ++modCount; 448                             } 449                             break; 450                         } 451                         e = e.next; 452                     } 453                     else { 454                         if (node != null) 455                             node.setNext(first); 456                         else 457                             node = new HashEntry<K,V>(hash, key, value, first); 458                         int c = count + 1; 459                         if (c > threshold && tab.length < MAXIMUM_CAPACITY) 460                             rehash(node); 461                         else 462                             setEntryAt(tab, index, node); 463                         ++modCount; 464                         count = c; 465                         oldValue = null; 466                         break; 467                     } 468                 } 469             } finally { 470                 unlock(); 471             } 472             return oldValue; 473         } 474  475         /** 476          * Doubles size of table and repacks entries, also adding the 477          * given node to new table 478          */ 479         @SuppressWarnings("unchecked") 480         private void rehash(HashEntry<K,V> node) { 481             /* 482              * Reclassify nodes in each list to new table.  Because we 483              * are using power-of-two expansion, the elements from 484              * each bin must either stay at same index, or move with a 485              * power of two offset. We eliminate unnecessary node 486              * creation by catching cases where old nodes can be 487              * reused because their next fields won't change. 488              * Statistically, at the default threshold, only about 489              * one-sixth of them need cloning when a table 490              * doubles. The nodes they replace will be garbage 491              * collectable as soon as they are no longer referenced by 492              * any reader thread that may be in the midst of 493              * concurrently traversing table. Entry accesses use plain 494              * array indexing because they are followed by volatile 495              * table write. 496              */ 497             HashEntry<K,V>[] oldTable = table; 498             int oldCapacity = oldTable.length; 499             int newCapacity = oldCapacity << 1; 500             threshold = (int)(newCapacity * loadFactor); 501             HashEntry<K,V>[] newTable = 502                 (HashEntry<K,V>[]) new HashEntry[newCapacity]; 503             int sizeMask = newCapacity - 1; 504             for (int i = 0; i < oldCapacity ; i++) { 505                 HashEntry<K,V> e = oldTable[i]; 506                 if (e != null) { 507                     HashEntry<K,V> next = e.next; 508                     int idx = e.hash & sizeMask; 509                     if (next == null)   //  Single node on list 510                         newTable[idx] = e; 511                     else { // Reuse consecutive sequence at same slot 512                         HashEntry<K,V> lastRun = e; 513                         int lastIdx = idx; 514                         for (HashEntry<K,V> last = next; 515                              last != null; 516                              last = last.next) { 517                             int k = last.hash & sizeMask; 518                             if (k != lastIdx) { 519                                 lastIdx = k; 520                                 lastRun = last; 521                             } 522                         } 523                         newTable[lastIdx] = lastRun; 524                         // Clone remaining nodes 525                         for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { 526                             V v = p.value; 527                             int h = p.hash; 528                             int k = h & sizeMask; 529                             HashEntry<K,V> n = newTable[k]; 530                             newTable[k] = new HashEntry<K,V>(h, p.key, v, n); 531                         } 532                     } 533                 } 534             } 535             int nodeIndex = node.hash & sizeMask; // add the new node 536             node.setNext(newTable[nodeIndex]); 537             newTable[nodeIndex] = node; 538             table = newTable; 539         } 540  541         /** 542          * Scans for a node containing given key while trying to 543          * acquire lock, creating and returning one if not found. Upon 544          * return, guarantees that lock is held. UNlike in most 545          * methods, calls to method equals are not screened: Since 546          * traversal speed doesn't matter, we might as well help warm 547          * up the associated code and accesses as well. 548          * 549          * @return a new node if key not found, else null 550          */ 551         private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { 552             HashEntry<K,V> first = entryForHash(this, hash); 553             HashEntry<K,V> e = first; 554             HashEntry<K,V> node = null; 555             int retries = -1; // negative while locating node 556             while (!tryLock()) { 557                 HashEntry<K,V> f; // to recheck first below 558                 if (retries < 0) { 559                     if (e == null) { 560                         if (node == null) // speculatively create node 561                             node = new HashEntry<K,V>(hash, key, value, null); 562                         retries = 0; 563                     } 564                     else if (key.equals(e.key)) 565                         retries = 0; 566                     else 567                         e = e.next; 568                 } 569                 else if (++retries > MAX_SCAN_RETRIES) { 570                     lock(); 571                     break; 572                 } 573                 else if ((retries & 1) == 0 && 574                          (f = entryForHash(this, hash)) != first) { 575                     e = first = f; // re-traverse if entry changed 576                     retries = -1; 577                 } 578             } 579             return node; 580         } 581  582         /** 583          * Scans for a node containing the given key while trying to 584          * acquire lock for a remove or replace operation. Upon 585          * return, guarantees that lock is held.  Note that we must 586          * lock even if the key is not found, to ensure sequential 587          * consistency of updates. 588          */ 589         private void scanAndLock(Object key, int hash) { 590             // similar to but simpler than scanAndLockForPut 591             HashEntry<K,V> first = entryForHash(this, hash); 592             HashEntry<K,V> e = first; 593             int retries = -1; 594             while (!tryLock()) { 595                 HashEntry<K,V> f; 596                 if (retries < 0) { 597                     if (e == null || key.equals(e.key)) 598                         retries = 0; 599                     else 600                         e = e.next; 601                 } 602                 else if (++retries > MAX_SCAN_RETRIES) { 603                     lock(); 604                     break; 605                 } 606                 else if ((retries & 1) == 0 && 607                          (f = entryForHash(this, hash)) != first) { 608                     e = first = f; 609                     retries = -1; 610                 } 611             } 612         } 613  614         /** 615          * Remove; match on key only if value null, else match both. 616          */ 617         final V remove(Object key, int hash, Object value) { 618             if (!tryLock()) 619                 scanAndLock(key, hash); 620             V oldValue = null; 621             try { 622                 HashEntry<K,V>[] tab = table; 623                 int index = (tab.length - 1) & hash; 624                 HashEntry<K,V> e = entryAt(tab, index); 625                 HashEntry<K,V> pred = null; 626                 while (e != null) { 627                     K k; 628                     HashEntry<K,V> next = e.next; 629                     if ((k = e.key) == key || 630                         (e.hash == hash && key.equals(k))) { 631                         V v = e.value; 632                         if (value == null || value == v || value.equals(v)) { 633                             if (pred == null) 634                                 setEntryAt(tab, index, next); 635                             else 636                                 pred.setNext(next); 637                             ++modCount; 638                             --count; 639                             oldValue = v; 640                         } 641                         break; 642                     } 643                     pred = e; 644                     e = next; 645                 } 646             } finally { 647                 unlock(); 648             } 649             return oldValue; 650         } 651  652         final boolean replace(K key, int hash, V oldValue, V newValue) { 653             if (!tryLock()) 654                 scanAndLock(key, hash); 655             boolean replaced = false; 656             try { 657                 HashEntry<K,V> e; 658                 for (e = entryForHash(this, hash); e != null; e = e.next) { 659                     K k; 660                     if ((k = e.key) == key || 661                         (e.hash == hash && key.equals(k))) { 662                         if (oldValue.equals(e.value)) { 663                             e.value = newValue; 664                             ++modCount; 665                             replaced = true; 666                         } 667                         break; 668                     } 669                 } 670             } finally { 671                 unlock(); 672             } 673             return replaced; 674         } 675  676         final V replace(K key, int hash, V value) { 677             if (!tryLock()) 678                 scanAndLock(key, hash); 679             V oldValue = null; 680             try { 681                 HashEntry<K,V> e; 682                 for (e = entryForHash(this, hash); e != null; e = e.next) { 683                     K k; 684                     if ((k = e.key) == key || 685                         (e.hash == hash && key.equals(k))) { 686                         oldValue = e.value; 687                         e.value = value; 688                         ++modCount; 689                         break; 690                     } 691                 } 692             } finally { 693                 unlock(); 694             } 695             return oldValue; 696         } 697  698         final void clear() { 699             lock(); 700             try { 701                 HashEntry<K,V>[] tab = table; 702                 for (int i = 0; i < tab.length ; i++) 703                     setEntryAt(tab, i, null); 704                 ++modCount; 705                 count = 0; 706             } finally { 707                 unlock(); 708             } 709         } 710     } 711  712     // Accessing segments 713  714     /** 715      * Gets the jth element of given segment array (if nonnull) with 716      * volatile element access semantics via Unsafe. (The null check 717      * can trigger harmlessly only during deserialization.) Note: 718      * because each element of segments array is set only once (using 719      * fully ordered writes), some performance-sensitive methods rely 720      * on this method only as a recheck upon null reads. 721      */ 722     @SuppressWarnings("unchecked") 723     static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) { 724         long u = (j << SSHIFT) + SBASE; 725         return ss == null ? null : 726             (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u); 727     } 728  729     /** 730      * Returns the segment for the given index, creating it and 731      * recording in segment table (via CAS) if not already present. 732      * 733      * @param k the index 734      * @return the segment 735      */ 736     @SuppressWarnings("unchecked") 737     private Segment<K,V> ensureSegment(int k) { 738         final Segment<K,V>[] ss = this.segments; 739         long u = (k << SSHIFT) + SBASE; // raw offset 740         Segment<K,V> seg; 741         if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { 742             Segment<K,V> proto = ss[0]; // use segment 0 as prototype 743             int cap = proto.table.length; 744             float lf = proto.loadFactor; 745             int threshold = (int)(cap * lf); 746             HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; 747             if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) 748                 == null) { // recheck 749                 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); 750                 while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) 751                        == null) { 752                     if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) 753                         break; 754                 } 755             } 756         } 757         return seg; 758     } 759  760     // Hash-based segment and entry accesses 761  762     /** 763      * Get the segment for the given hash 764      */ 765     @SuppressWarnings("unchecked") 766     private Segment<K,V> segmentForHash(int h) { 767         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; 768         return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u); 769     } 770  771     /** 772      * Gets the table entry for the given segment and hash 773      */ 774     @SuppressWarnings("unchecked") 775     static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) { 776         HashEntry<K,V>[] tab; 777         return (seg == null || (tab = seg.table) == null) ? null : 778             (HashEntry<K,V>) UNSAFE.getObjectVolatile 779             (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); 780     } 781  782     /* ---------------- Public operations -------------- */ 783  784     /** 785      * Creates a new, empty map with the specified initial 786      * capacity, load factor and concurrency level. 787      * 788      * @param initialCapacity the initial capacity. The implementation 789      * performs internal sizing to accommodate this many elements. 790      * @param loadFactor  the load factor threshold, used to control resizing. 791      * Resizing may be performed when the average number of elements per 792      * bin exceeds this threshold. 793      * @param concurrencyLevel the estimated number of concurrently 794      * updating threads. The implementation performs internal sizing 795      * to try to accommodate this many threads. 796      * @throws IllegalArgumentException if the initial capacity is 797      * negative or the load factor or concurrencyLevel are 798      * nonpositive. 799      */ 800     @SuppressWarnings("unchecked") 801     public ConcurrentHashMap(int initialCapacity, 802                              float loadFactor, int concurrencyLevel) { 803         if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) 804             throw new IllegalArgumentException(); 805         if (concurrencyLevel > MAX_SEGMENTS) 806             concurrencyLevel = MAX_SEGMENTS; 807         // Find power-of-two sizes best matching arguments 808         int sshift = 0; 809         int ssize = 1; 810         while (ssize < concurrencyLevel) { 811             ++sshift; 812             ssize <<= 1; 813         } 814         this.segmentShift = 32 - sshift; 815         this.segmentMask = ssize - 1; 816         if (initialCapacity > MAXIMUM_CAPACITY) 817             initialCapacity = MAXIMUM_CAPACITY; 818         int c = initialCapacity / ssize; 819         if (c * ssize < initialCapacity) 820             ++c; 821         int cap = MIN_SEGMENT_TABLE_CAPACITY; 822         while (cap < c) 823             cap <<= 1; 824         // create segments and segments[0] 825         Segment<K,V> s0 = 826             new Segment<K,V>(loadFactor, (int)(cap * loadFactor), 827                              (HashEntry<K,V>[])new HashEntry[cap]); 828         Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; 829         UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] 830         this.segments = ss; 831     } 832  833     /** 834      * Creates a new, empty map with the specified initial capacity 835      * and load factor and with the default concurrencyLevel (16). 836      * 837      * @param initialCapacity The implementation performs internal 838      * sizing to accommodate this many elements. 839      * @param loadFactor  the load factor threshold, used to control resizing. 840      * Resizing may be performed when the average number of elements per 841      * bin exceeds this threshold. 842      * @throws IllegalArgumentException if the initial capacity of 843      * elements is negative or the load factor is nonpositive 844      * 845      * @since 1.6 846      */ 847     public ConcurrentHashMap(int initialCapacity, float loadFactor) { 848         this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); 849     } 850  851     /** 852      * Creates a new, empty map with the specified initial capacity, 853      * and with default load factor (0.75) and concurrencyLevel (16). 854      * 855      * @param initialCapacity the initial capacity. The implementation 856      * performs internal sizing to accommodate this many elements. 857      * @throws IllegalArgumentException if the initial capacity of 858      * elements is negative. 859      */ 860     public ConcurrentHashMap(int initialCapacity) { 861         this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); 862     } 863  864     /** 865      * Creates a new, empty map with a default initial capacity (16), 866      * load factor (0.75) and concurrencyLevel (16). 867      */ 868     public ConcurrentHashMap() { 869         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); 870     } 871  872     /** 873      * Creates a new map with the same mappings as the given map. 874      * The map is created with a capacity of 1.5 times the number 875      * of mappings in the given map or 16 (whichever is greater), 876      * and a default load factor (0.75) and concurrencyLevel (16). 877      * 878      * @param m the map 879      */ 880     public ConcurrentHashMap(Map<? extends K, ? extends V> m) { 881         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, 882                       DEFAULT_INITIAL_CAPACITY), 883              DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); 884         putAll(m); 885     } 886  887     /** 888      * Returns <tt>true</tt> if this map contains no key-value mappings. 889      * 890      * @return <tt>true</tt> if this map contains no key-value mappings 891      */ 892     public boolean isEmpty() { 893         /* 894          * Sum per-segment modCounts to avoid mis-reporting when 895          * elements are concurrently added and removed in one segment 896          * while checking another, in which case the table was never 897          * actually empty at any point. (The sum ensures accuracy up 898          * through at least 1<<31 per-segment modifications before 899          * recheck.)  Methods size() and containsValue() use similar 900          * constructions for stability checks. 901          */ 902         long sum = 0L; 903         final Segment<K,V>[] segments = this.segments; 904         for (int j = 0; j < segments.length; ++j) { 905             Segment<K,V> seg = segmentAt(segments, j); 906             if (seg != null) { 907                 if (seg.count != 0) 908                     return false; 909                 sum += seg.modCount; 910             } 911         } 912         if (sum != 0L) { // recheck unless no modifications 913             for (int j = 0; j < segments.length; ++j) { 914                 Segment<K,V> seg = segmentAt(segments, j); 915                 if (seg != null) { 916                     if (seg.count != 0) 917                         return false; 918                     sum -= seg.modCount; 919                 } 920             } 921             if (sum != 0L) 922                 return false; 923         } 924         return true; 925     } 926  927     /** 928      * Returns the number of key-value mappings in this map.  If the 929      * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns 930      * <tt>Integer.MAX_VALUE</tt>. 931      * 932      * @return the number of key-value mappings in this map 933      */ 934     public int size() { 935         // Try a few times to get accurate count. On failure due to 936         // continuous async changes in table, resort to locking. 937         final Segment<K,V>[] segments = this.segments; 938         int size; 939         boolean overflow; // true if size overflows 32 bits 940         long sum;         // sum of modCounts 941         long last = 0L;   // previous sum 942         int retries = -1; // first iteration isn't retry 943         try { 944             for (;;) { 945                 if (retries++ == RETRIES_BEFORE_LOCK) { 946                     for (int j = 0; j < segments.length; ++j) 947                         ensureSegment(j).lock(); // force creation 948                 } 949                 sum = 0L; 950                 size = 0; 951                 overflow = false; 952                 for (int j = 0; j < segments.length; ++j) { 953                     Segment<K,V> seg = segmentAt(segments, j); 954                     if (seg != null) { 955                         sum += seg.modCount; 956                         int c = seg.count; 957                         if (c < 0 || (size += c) < 0) 958                             overflow = true; 959                     } 960                 } 961                 if (sum == last) 962                     break; 963                 last = sum; 964             } 965         } finally { 966             if (retries > RETRIES_BEFORE_LOCK) { 967                 for (int j = 0; j < segments.length; ++j) 968                     segmentAt(segments, j).unlock(); 969             } 970         } 971         return overflow ? Integer.MAX_VALUE : size; 972     } 973  974     /** 975      * Returns the value to which the specified key is mapped, 976      * or {@code null} if this map contains no mapping for the key. 977      * 978      * <p>More formally, if this map contains a mapping from a key 979      * {@code k} to a value {@code v} such that {@code key.equals(k)}, 980      * then this method returns {@code v}; otherwise it returns 981      * {@code null}.  (There can be at most one such mapping.) 982      * 983      * @throws NullPointerException if the specified key is null 984      */ 985     public V get(Object key) { 986         Segment<K,V> s; // manually integrate access methods to reduce overhead 987         HashEntry<K,V>[] tab; 988         int h = hash(key); 989         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; 990         if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && 991             (tab = s.table) != null) { 992             for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile 993                      (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); 994                  e != null; e = e.next) { 995                 K k; 996                 if ((k = e.key) == key || (e.hash == h && key.equals(k))) 997                     return e.value; 998             } 999         }1000         return null;1001     }1002 1003     /**1004      * Tests if the specified object is a key in this table.1005      *1006      * @param  key   possible key1007      * @return <tt>true</tt> if and only if the specified object1008      *         is a key in this table, as determined by the1009      *         <tt>equals</tt> method; <tt>false</tt> otherwise.1010      * @throws NullPointerException if the specified key is null1011      */1012     @SuppressWarnings("unchecked")1013     public boolean containsKey(Object key) {1014         Segment<K,V> s; // same as get() except no need for volatile value read1015         HashEntry<K,V>[] tab;1016         int h = hash(key);1017         long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;1018         if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&1019             (tab = s.table) != null) {1020             for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile1021                      (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);1022                  e != null; e = e.next) {1023                 K k;1024                 if ((k = e.key) == key || (e.hash == h && key.equals(k)))1025                     return true;1026             }1027         }1028         return false;1029     }1030 1031     /**1032      * Returns <tt>true</tt> if this map maps one or more keys to the1033      * specified value. Note: This method requires a full internal1034      * traversal of the hash table, and so is much slower than1035      * method <tt>containsKey</tt>.1036      *1037      * @param value value whose presence in this map is to be tested1038      * @return <tt>true</tt> if this map maps one or more keys to the1039      *         specified value1040      * @throws NullPointerException if the specified value is null1041      */1042     public boolean containsValue(Object value) {1043         // Same idea as size()1044         if (value == null)1045             throw new NullPointerException();1046         final Segment<K,V>[] segments = this.segments;1047         boolean found = false;1048         long last = 0;1049         int retries = -1;1050         try {1051             outer: for (;;) {1052                 if (retries++ == RETRIES_BEFORE_LOCK) {1053                     for (int j = 0; j < segments.length; ++j)1054                         ensureSegment(j).lock(); // force creation1055                 }1056                 long hashSum = 0L;1057                 int sum = 0;1058                 for (int j = 0; j < segments.length; ++j) {1059                     HashEntry<K,V>[] tab;1060                     Segment<K,V> seg = segmentAt(segments, j);1061                     if (seg != null && (tab = seg.table) != null) {1062                         for (int i = 0 ; i < tab.length; i++) {1063                             HashEntry<K,V> e;1064                             for (e = entryAt(tab, i); e != null; e = e.next) {1065                                 V v = e.value;1066                                 if (v != null && value.equals(v)) {1067                                     found = true;1068                                     break outer;1069                                 }1070                             }1071                         }1072                         sum += seg.modCount;1073                     }1074                 }1075                 if (retries > 0 && sum == last)1076                     break;1077                 last = sum;1078             }1079         } finally {1080             if (retries > RETRIES_BEFORE_LOCK) {1081                 for (int j = 0; j < segments.length; ++j)1082                     segmentAt(segments, j).unlock();1083             }1084         }1085         return found;1086     }1087 1088     /**1089      * Legacy method testing if some key maps into the specified value1090      * in this table.  This method is identical in functionality to1091      * {@link #containsValue}, and exists solely to ensure1092      * full compatibility with class {@link java.util.Hashtable},1093      * which supported this method prior to introduction of the1094      * Java Collections framework.1095 1096      * @param  value a value to search for1097      * @return <tt>true</tt> if and only if some key maps to the1098      *         <tt>value</tt> argument in this table as1099      *         determined by the <tt>equals</tt> method;1100      *         <tt>false</tt> otherwise1101      * @throws NullPointerException if the specified value is null1102      */1103     public boolean contains(Object value) {1104         return containsValue(value);1105     }1106 1107     /**1108      * Maps the specified key to the specified value in this table.1109      * Neither the key nor the value can be null.1110      *1111      * <p> The value can be retrieved by calling the <tt>get</tt> method1112      * with a key that is equal to the original key.1113      *1114      * @param key key with which the specified value is to be associated1115      * @param value value to be associated with the specified key1116      * @return the previous value associated with <tt>key</tt>, or1117      *         <tt>null</tt> if there was no mapping for <tt>key</tt>1118      * @throws NullPointerException if the specified key or value is null1119      */1120     @SuppressWarnings("unchecked")1121     public V put(K key, V value) {1122         Segment<K,V> s;1123         if (value == null)1124             throw new NullPointerException();1125         int hash = hash(key);1126         int j = (hash >>> segmentShift) & segmentMask;1127         if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck1128              (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment1129             s = ensureSegment(j);1130         return s.put(key, hash, value, false);1131     }1132 1133     /**1134      * {@inheritDoc}1135      *1136      * @return the previous value associated with the specified key,1137      *         or <tt>null</tt> if there was no mapping for the key1138      * @throws NullPointerException if the specified key or value is null1139      */1140     @SuppressWarnings("unchecked")1141     public V putIfAbsent(K key, V value) {1142         Segment<K,V> s;1143         if (value == null)1144             throw new NullPointerException();1145         int hash = hash(key);1146         int j = (hash >>> segmentShift) & segmentMask;1147         if ((s = (Segment<K,V>)UNSAFE.getObject1148              (segments, (j << SSHIFT) + SBASE)) == null)1149             s = ensureSegment(j);1150         return s.put(key, hash, value, true);1151     }1152 1153     /**1154      * Copies all of the mappings from the specified map to this one.1155      * These mappings replace any mappings that this map had for any of the1156      * keys currently in the specified map.1157      *1158      * @param m mappings to be stored in this map1159      */1160     public void putAll(Map<? extends K, ? extends V> m) {1161         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())1162             put(e.getKey(), e.getValue());1163     }1164 1165     /**1166      * Removes the key (and its corresponding value) from this map.1167      * This method does nothing if the key is not in the map.1168      *1169      * @param  key the key that needs to be removed1170      * @return the previous value associated with <tt>key</tt>, or1171      *         <tt>null</tt> if there was no mapping for <tt>key</tt>1172      * @throws NullPointerException if the specified key is null1173      */1174     public V remove(Object key) {1175         int hash = hash(key);1176         Segment<K,V> s = segmentForHash(hash);1177         return s == null ? null : s.remove(key, hash, null);1178     }1179 1180     /**1181      * {@inheritDoc}1182      *1183      * @throws NullPointerException if the specified key is null1184      */1185     public boolean remove(Object key, Object value) {1186         int hash = hash(key);1187         Segment<K,V> s;1188         return value != null && (s = segmentForHash(hash)) != null &&1189             s.remove(key, hash, value) != null;1190     }1191 1192     /**1193      * {@inheritDoc}1194      *1195      * @throws NullPointerException if any of the arguments are null1196      */1197     public boolean replace(K key, V oldValue, V newValue) {1198         int hash = hash(key);1199         if (oldValue == null || newValue == null)1200             throw new NullPointerException();1201         Segment<K,V> s = segmentForHash(hash);1202         return s != null && s.replace(key, hash, oldValue, newValue);1203     }1204 1205     /**1206      * {@inheritDoc}1207      *1208      * @return the previous value associated with the specified key,1209      *         or <tt>null</tt> if there was no mapping for the key1210      * @throws NullPointerException if the specified key or value is null1211      */1212     public V replace(K key, V value) {1213         int hash = hash(key);1214         if (value == null)1215             throw new NullPointerException();1216         Segment<K,V> s = segmentForHash(hash);1217         return s == null ? null : s.replace(key, hash, value);1218     }1219 1220     /**1221      * Removes all of the mappings from this map.1222      */1223     public void clear() {1224         final Segment<K,V>[] segments = this.segments;1225         for (int j = 0; j < segments.length; ++j) {1226             Segment<K,V> s = segmentAt(segments, j);1227             if (s != null)1228                 s.clear();1229         }1230     }1231 1232     /**1233      * Returns a {@link Set} view of the keys contained in this map.1234      * The set is backed by the map, so changes to the map are1235      * reflected in the set, and vice-versa.  The set supports element1236      * removal, which removes the corresponding mapping from this map,1237      * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,1238      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>1239      * operations.  It does not support the <tt>add</tt> or1240      * <tt>addAll</tt> operations.1241      *1242      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator1243      * that will never throw {@link ConcurrentModificationException},1244      * and guarantees to traverse elements as they existed upon1245      * construction of the iterator, and may (but is not guaranteed to)1246      * reflect any modifications subsequent to construction.1247      */1248     public Set<K> keySet() {1249         Set<K> ks = keySet;1250         return (ks != null) ? ks : (keySet = new KeySet());1251     }1252 1253     /**1254      * Returns a {@link Collection} view of the values contained in this map.1255      * The collection is backed by the map, so changes to the map are1256      * reflected in the collection, and vice-versa.  The collection1257      * supports element removal, which removes the corresponding1258      * mapping from this map, via the <tt>Iterator.remove</tt>,1259      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,1260      * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not1261      * support the <tt>add</tt> or <tt>addAll</tt> operations.1262      *1263      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator1264      * that will never throw {@link ConcurrentModificationException},1265      * and guarantees to traverse elements as they existed upon1266      * construction of the iterator, and may (but is not guaranteed to)1267      * reflect any modifications subsequent to construction.1268      */1269     public Collection<V> values() {1270         Collection<V> vs = values;1271         return (vs != null) ? vs : (values = new Values());1272     }1273 1274     /**1275      * Returns a {@link Set} view of the mappings contained in this map.1276      * The set is backed by the map, so changes to the map are1277      * reflected in the set, and vice-versa.  The set supports element1278      * removal, which removes the corresponding mapping from the map,1279      * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,1280      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>1281      * operations.  It does not support the <tt>add</tt> or1282      * <tt>addAll</tt> operations.1283      *1284      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator1285      * that will never throw {@link ConcurrentModificationException},1286      * and guarantees to traverse elements as they existed upon1287      * construction of the iterator, and may (but is not guaranteed to)1288      * reflect any modifications subsequent to construction.1289      */1290     public Set<Map.Entry<K,V>> entrySet() {1291         Set<Map.Entry<K,V>> es = entrySet;1292         return (es != null) ? es : (entrySet = new EntrySet());1293     }1294 1295     /**1296      * Returns an enumeration of the keys in this table.1297      *1298      * @return an enumeration of the keys in this table1299      * @see #keySet()1300      */1301     public Enumeration<K> keys() {1302         return new KeyIterator();1303     }1304 1305     /**1306      * Returns an enumeration of the values in this table.1307      *1308      * @return an enumeration of the values in this table1309      * @see #values()1310      */1311     public Enumeration<V> elements() {1312         return new ValueIterator();1313     }1314 1315     /* ---------------- Iterator Support -------------- */1316 1317     abstract class HashIterator {1318         int nextSegmentIndex;1319         int nextTableIndex;1320         HashEntry<K,V>[] currentTable;1321         HashEntry<K, V> nextEntry;1322         HashEntry<K, V> lastReturned;1323 1324         HashIterator() {1325             nextSegmentIndex = segments.length - 1;1326             nextTableIndex = -1;1327             advance();1328         }1329 1330         /**1331          * Set nextEntry to first node of next non-empty table1332          * (in backwards order, to simplify checks).1333          */1334         final void advance() {1335             for (;;) {1336                 if (nextTableIndex >= 0) {1337                     if ((nextEntry = entryAt(currentTable,1338                                              nextTableIndex--)) != null)1339                         break;1340                 }1341                 else if (nextSegmentIndex >= 0) {1342                     Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);1343                     if (seg != null && (currentTable = seg.table) != null)1344                         nextTableIndex = currentTable.length - 1;1345                 }1346                 else1347                     break;1348             }1349         }1350 1351         final HashEntry<K,V> nextEntry() {1352             HashEntry<K,V> e = nextEntry;1353             if (e == null)1354                 throw new NoSuchElementException();1355             lastReturned = e; // cannot assign until after null check1356             if ((nextEntry = e.next) == null)1357                 advance();1358             return e;1359         }1360 1361         public final boolean hasNext() { return nextEntry != null; }1362         public final boolean hasMoreElements() { return nextEntry != null; }1363 1364         public final void remove() {1365             if (lastReturned == null)1366                 throw new IllegalStateException();1367             ConcurrentHashMap.this.remove(lastReturned.key);1368             lastReturned = null;1369         }1370     }1371 1372     final class KeyIterator1373         extends HashIterator1374         implements Iterator<K>, Enumeration<K>1375     {1376         public final K next()        { return super.nextEntry().key; }1377         public final K nextElement() { return super.nextEntry().key; }1378     }1379 1380     final class ValueIterator1381         extends HashIterator1382         implements Iterator<V>, Enumeration<V>1383     {1384         public final V next()        { return super.nextEntry().value; }1385         public final V nextElement() { return super.nextEntry().value; }1386     }1387 1388     /**1389      * Custom Entry class used by EntryIterator.next(), that relays1390      * setValue changes to the underlying map.1391      */1392     final class WriteThroughEntry1393         extends AbstractMap.SimpleEntry<K,V>1394     {1395         WriteThroughEntry(K k, V v) {1396             super(k,v);1397         }1398 1399         /**1400          * Set our entry's value and write through to the map. The1401          * value to return is somewhat arbitrary here. Since a1402          * WriteThroughEntry does not necessarily track asynchronous1403          * changes, the most recent "previous" value could be1404          * different from what we return (or could even have been1405          * removed in which case the put will re-establish). We do not1406          * and cannot guarantee more.1407          */1408         public V setValue(V value) {1409             if (value == null) throw new NullPointerException();1410             V v = super.setValue(value);1411             ConcurrentHashMap.this.put(getKey(), value);1412             return v;1413         }1414     }1415 1416     final class EntryIterator1417         extends HashIterator1418         implements Iterator<Entry<K,V>>1419     {1420         public Map.Entry<K,V> next() {1421             HashEntry<K,V> e = super.nextEntry();1422             return new WriteThroughEntry(e.key, e.value);1423         }1424     }1425 1426     final class KeySet extends AbstractSet<K> {1427         public Iterator<K> iterator() {1428             return new KeyIterator();1429         }1430         public int size() {1431             return ConcurrentHashMap.this.size();1432         }1433         public boolean isEmpty() {1434             return ConcurrentHashMap.this.isEmpty();1435         }1436         public boolean contains(Object o) {1437             return ConcurrentHashMap.this.containsKey(o);1438         }1439         public boolean remove(Object o) {1440             return ConcurrentHashMap.this.remove(o) != null;1441         }1442         public void clear() {1443             ConcurrentHashMap.this.clear();1444         }1445     }1446 1447     final class Values extends AbstractCollection<V> {1448         public Iterator<V> iterator() {1449             return new ValueIterator();1450         }1451         public int size() {1452             return ConcurrentHashMap.this.size();1453         }1454         public boolean isEmpty() {1455             return ConcurrentHashMap.this.isEmpty();1456         }1457         public boolean contains(Object o) {1458             return ConcurrentHashMap.this.containsValue(o);1459         }1460         public void clear() {1461             ConcurrentHashMap.this.clear();1462         }1463     }1464 1465     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {1466         public Iterator<Map.Entry<K,V>> iterator() {1467             return new EntryIterator();1468         }1469         public boolean contains(Object o) {1470             if (!(o instanceof Map.Entry))1471                 return false;1472             Map.Entry<?,?> e = (Map.Entry<?,?>)o;1473             V v = ConcurrentHashMap.this.get(e.getKey());1474             return v != null && v.equals(e.getValue());1475         }1476         public boolean remove(Object o) {1477             if (!(o instanceof Map.Entry))1478                 return false;1479             Map.Entry<?,?> e = (Map.Entry<?,?>)o;1480             return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());1481         }1482         public int size() {1483             return ConcurrentHashMap.this.size();1484         }1485         public boolean isEmpty() {1486             return ConcurrentHashMap.this.isEmpty();1487         }1488         public void clear() {1489             ConcurrentHashMap.this.clear();1490         }1491     }1492 1493     /* ---------------- Serialization Support -------------- */1494 1495     /**1496      * Save the state of the <tt>ConcurrentHashMap</tt> instance to a1497      * stream (i.e., serialize it).1498      * @param s the stream1499      * @serialData1500      * the key (Object) and value (Object)1501      * for each key-value mapping, followed by a null pair.1502      * The key-value mappings are emitted in no particular order.1503      */1504     private void writeObject(java.io.ObjectOutputStream s) throws IOException {1505         // force all segments for serialization compatibility1506         for (int k = 0; k < segments.length; ++k)1507             ensureSegment(k);1508         s.defaultWriteObject();1509 1510         final Segment<K,V>[] segments = this.segments;1511         for (int k = 0; k < segments.length; ++k) {1512             Segment<K,V> seg = segmentAt(segments, k);1513             seg.lock();1514             try {1515                 HashEntry<K,V>[] tab = seg.table;1516                 for (int i = 0; i < tab.length; ++i) {1517                     HashEntry<K,V> e;1518                     for (e = entryAt(tab, i); e != null; e = e.next) {1519                         s.writeObject(e.key);1520                         s.writeObject(e.value);1521                     }1522                 }1523             } finally {1524                 seg.unlock();1525             }1526         }1527         s.writeObject(null);1528         s.writeObject(null);1529     }1530 1531     /**1532      * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a1533      * stream (i.e., deserialize it).1534      * @param s the stream1535      */1536     @SuppressWarnings("unchecked")1537     private void readObject(java.io.ObjectInputStream s)1538         throws IOException, ClassNotFoundException {1539         // Don't call defaultReadObject()1540         ObjectInputStream.GetField oisFields = s.readFields();1541         final Segment<K,V>[] oisSegments = (Segment<K,V>[])oisFields.get("segments", null);1542 1543         final int ssize = oisSegments.length;1544         if (ssize < 1 || ssize > MAX_SEGMENTS1545             || (ssize & (ssize-1)) != 0 )  // ssize not power of two1546             throw new java.io.InvalidObjectException("Bad number of segments:"1547                                                      + ssize);1548         int sshift = 0, ssizeTmp = ssize;1549         while (ssizeTmp > 1) {1550             ++sshift;1551             ssizeTmp >>>= 1;1552         }1553         UNSAFE.putIntVolatile(this, SEGSHIFT_OFFSET, 32 - sshift);1554         UNSAFE.putIntVolatile(this, SEGMASK_OFFSET, ssize - 1);1555         UNSAFE.putObjectVolatile(this, SEGMENTS_OFFSET, oisSegments);1556 1557         // set hashMask1558         UNSAFE.putIntVolatile(this, HASHSEED_OFFSET, randomHashSeed(this));1559 1560         // Re-initialize segments to be minimally sized, and let grow.1561         int cap = MIN_SEGMENT_TABLE_CAPACITY;1562         final Segment<K,V>[] segments = this.segments;1563         for (int k = 0; k < segments.length; ++k) {1564             Segment<K,V> seg = segments[k];1565             if (seg != null) {1566                 seg.threshold = (int)(cap * seg.loadFactor);1567                 seg.table = (HashEntry<K,V>[]) new HashEntry[cap];1568             }1569         }1570 1571         // Read the keys and values, and put the mappings in the table1572         for (;;) {1573             K key = (K) s.readObject();1574             V value = (V) s.readObject();1575             if (key == null)1576                 break;1577             put(key, value);1578         }1579     }1580 1581     // Unsafe mechanics1582     private static final sun.misc.Unsafe UNSAFE;1583     private static final long SBASE;1584     private static final int SSHIFT;1585     private static final long TBASE;1586     private static final int TSHIFT;1587     private static final long HASHSEED_OFFSET;1588     private static final long SEGSHIFT_OFFSET;1589     private static final long SEGMASK_OFFSET;1590     private static final long SEGMENTS_OFFSET;1591 1592     static {1593         int ss, ts;1594         try {1595             UNSAFE = sun.misc.Unsafe.getUnsafe();1596             Class tc = HashEntry[].class;1597             Class sc = Segment[].class;1598             TBASE = UNSAFE.arrayBaseOffset(tc);1599             SBASE = UNSAFE.arrayBaseOffset(sc);1600             ts = UNSAFE.arrayIndexScale(tc);1601             ss = UNSAFE.arrayIndexScale(sc);1602             HASHSEED_OFFSET = UNSAFE.objectFieldOffset(1603                 ConcurrentHashMap.class.getDeclaredField("hashSeed"));1604             SEGSHIFT_OFFSET = UNSAFE.objectFieldOffset(1605                 ConcurrentHashMap.class.getDeclaredField("segmentShift"));1606             SEGMASK_OFFSET = UNSAFE.objectFieldOffset(1607                 ConcurrentHashMap.class.getDeclaredField("segmentMask"));1608             SEGMENTS_OFFSET = UNSAFE.objectFieldOffset(1609                 ConcurrentHashMap.class.getDeclaredField("segments"));1610         } catch (Exception e) {1611             throw new Error(e);1612         }1613         if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)1614             throw new Error("data type scale not a power of two");1615         SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);1616         TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);1617     }1618 1619 }
复制代码

 

下面从ConcurrentHashMap的创建,获取,添加,删除这4个方面对ConcurrentHashMap进行分析。

1 创建

下面以ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel)来进行说明。

复制代码
@SuppressWarnings("unchecked")public ConcurrentHashMap(int initialCapacity,                         float loadFactor, int concurrencyLevel) {    // 参数有效性判断    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)        throw new IllegalArgumentException();    // concurrencyLevel是“用来计算segments的容量”    if (concurrencyLevel > MAX_SEGMENTS)        concurrencyLevel = MAX_SEGMENTS;    int sshift = 0;    int ssize = 1;    // ssize=“大于或等于concurrencyLevel的最小的2的N次方值”    while (ssize < concurrencyLevel) {        ++sshift;        ssize <<= 1;    }    // 初始化segmentShift和segmentMask    this.segmentShift = 32 - sshift;    this.segmentMask = ssize - 1;    // 哈希表的初始容量    // 哈希表的实际容量=“segments的容量” x “segments中数组的长度”    if (initialCapacity > MAXIMUM_CAPACITY)        initialCapacity = MAXIMUM_CAPACITY;    // “哈希表的初始容量” / “segments的容量”    int c = initialCapacity / ssize;    if (c * ssize < initialCapacity)        ++c;    // cap就是“segments中的HashEntry数组的长度”    int cap = MIN_SEGMENT_TABLE_CAPACITY;    while (cap < c)        cap <<= 1;    // segments    Segment<K,V> s0 =        new Segment<K,V>(loadFactor, (int)(cap * loadFactor),                         (HashEntry<K,V>[])new HashEntry[cap]);    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]    this.segments = ss;}
复制代码

说明
(01) 前面我们说过,ConcurrentHashMap采用了“锁分段”技术;在代码中,它通过“segments数组”对象来保存各个分段。segments的定义如下:

final Segment<K,V>[] segments;

    concurrencyLevel的作用就是用来计算segments数组的容量大小。先计算出“大于或等于concurrencyLevel的最小的2的N次方值”,然后将其保存为“segments的容量大小(ssize)”。
(02) initialCapacity是哈希表的初始容量。需要注意的是,哈希表的实际容量=“segments的容量” x “segments中数组的长度”。
(03) loadFactor是加载因子。它是哈希表在其容量自动增加之前可以达到多满的一种尺度。


ConcurrentHashMap的构造函数中涉及到的非常重要的一个结构体,它就是Segment。下面看看Segment的声明:

复制代码
static final class Segment<K,V> extends ReentrantLock implements Serializable {    ...    transient volatile HashEntry<K,V>[] table;    // threshold阈,是哈希表在其容量自动增加之前可以达到多满的一种尺度。    transient int threshold;    // loadFactor是加载因子    final float loadFactor;    Segment(float lf, int threshold, HashEntry<K,V>[] tab) {        this.loadFactor = lf;        this.threshold = threshold;        this.table = tab;    }    ...}
复制代码

说明:Segment包含HashEntry数组,HashEntry保存了哈希表中的键值对。
此外,还需要说明的Segment继承于ReentrantLock。这意味着,Segment本质上就是可重入的互斥锁。

HashEntry的源码如下:

复制代码
static final class HashEntry<K,V> {    final int hash;    // 哈希值    final K key;       //    volatile V value;  //    volatile HashEntry<K,V> next; // 下一个HashEntry节点    HashEntry(int hash, K key, V value, HashEntry<K,V> next) {        this.hash = hash;        this.key = key;        this.value = value;        this.next = next;    }    ...}
复制代码

说明:和HashMap的节点一样,HashEntry也是链表。这就说明,ConcurrentHashMap是链式哈希表,它是通过“拉链法”来解决哈希冲突的。

 

2 获取

下面以get(Object key)为例,对ConcurrentHashMap的获取方法进行说明。

复制代码
public V get(Object key) {    Segment<K,V> s; // manually integrate access methods to reduce overhead    HashEntry<K,V>[] tab;    int h = hash(key);    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;    // 获取key对应的Segment片段。    // 如果Segment片段不为null,则在“Segment片段的HashEntry数组中”中找到key所对应的HashEntry列表;    // 接着遍历该HashEntry链表,找到于key-value键值对对应的HashEntry节点。    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&        (tab = s.table) != null) {        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);             e != null; e = e.next) {            K k;            if ((k = e.key) == key || (e.hash == h && key.equals(k)))                return e.value;        }    }    return null;}
复制代码

说明:get(Object key)的作用是返回key在ConcurrentHashMap哈希表中对应的值。
它首先根据key计算出来的哈希值,获取key所对应的Segment片段。
如果Segment片段不为null,则在“Segment片段的HashEntry数组中”中找到key所对应的HashEntry列表。Segment包含“HashEntry数组”对象,而每一个HashEntry本质上是一个单向链表。
接着遍历该HashEntry链表,找到于key-value键值对对应的HashEntry节点。

下面是hash()的源码

复制代码
private int hash(Object k) {    int h = hashSeed;    if ((0 != h) && (k instanceof String)) {        return sun.misc.Hashing.stringHash32((String) k);    }    h ^= k.hashCode();    // Spread bits to regularize both segment and index locations,    // using variant of single-word Wang/Jenkins hash.    h += (h <<  15) ^ 0xffffcd7d;    h ^= (h >>> 10);    h += (h <<   3);    h ^= (h >>>  6);    h += (h <<   2) + (h << 14);    return h ^ (h >>> 16);}
复制代码

 

3 增加

下面以put(K key, V value)来对ConcurrentHashMap中增加键值对来进行说明。

复制代码
public V put(K key, V value) {    Segment<K,V> s;    if (value == null)        throw new NullPointerException();    // 获取key对应的哈希值    int hash = hash(key);    int j = (hash >>> segmentShift) & segmentMask;    // 如果找不到该Segment,则新建一个。    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck         (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment        s = ensureSegment(j);    return s.put(key, hash, value, false);}
复制代码

说明
(01) put()根据key获取对应的哈希值,再根据哈希值找到对应的Segment片段。如果Segment片段不存在,则新增一个Segment。
(02) 将key-value键值对添加到Segment片段中。

复制代码
final V put(K key, int hash, V value, boolean onlyIfAbsent) {    // tryLock()获取锁,成功返回true,失败返回false。    // 获取锁失败的话,则通过scanAndLockForPut()获取锁,并返回”要插入的key-value“对应的”HashEntry链表“。    HashEntry<K,V> node = tryLock() ? null :        scanAndLockForPut(key, hash, value);    V oldValue;    try {        // tab代表”当前Segment中的HashEntry数组“        HashEntry<K,V>[] tab = table;        //  根据”hash值“获取”HashEntry数组中对应的HashEntry链表“        int index = (tab.length - 1) & hash;        HashEntry<K,V> first = entryAt(tab, index);        for (HashEntry<K,V> e = first;;) {            // 如果”HashEntry链表中的当前HashEntry节点“不为null,            if (e != null) {                K k;                // 当”要插入的key-value键值对“已经存在于”HashEntry链表中“时,先保存原有的值。                // 若”onlyIfAbsent“为true,即”要插入的key不存在时才插入”,则直接退出;                // 否则,用新的value值覆盖原有的原有的值。                if ((k = e.key) == key ||                    (e.hash == hash && key.equals(k))) {                    oldValue = e.value;                    if (!onlyIfAbsent) {                        e.value = value;                        ++modCount;                    }                    break;                }                e = e.next;            }            else {                // 如果node非空,则将first设置为“node的下一个节点”。                // 否则,新建HashEntry链表                if (node != null)                    node.setNext(first);                else                    node = new HashEntry<K,V>(hash, key, value, first);                int c = count + 1;                // 如果添加key-value键值对之后,Segment中的元素超过阈值(并且,HashEntry数组的长度没超过限制),则rehash;                // 否则,直接添加key-value键值对。                if (c > threshold && tab.length < MAXIMUM_CAPACITY)                    rehash(node);                else                    setEntryAt(tab, index, node);                ++modCount;                count = c;                oldValue = null;                break;            }        }    } finally {        // 释放锁        unlock();    }    return oldValue;}
复制代码

说明
put()的作用是将key-value键值对插入到“当前Segment对应的HashEntry中”,在插入前它会获取Segment对应的互斥锁,插入后会释放锁。具体的插入过程如下:
(01) 首先根据“hash值”获取“当前Segment的HashEntry数组对象”中的“HashEntry节点”,每个HashEntry节点都是一个单向链表。
(02) 接着,遍历HashEntry链表。
       若在遍历HashEntry链表时,找到与“要key-value键值对”对应的节点,即“要插入的key-value键值对”的key已经存在于HashEntry链表中。则根据onlyIfAbsent进行判断,若onlyIfAbsent为true,即“当要插入的key不存在时才插入”,则不进行插入,直接返回;否则,用新的value值覆盖原始的value值,然后再返回。
       若在遍历HashEntry链表时,没有找到与“要key-value键值对”对应的节点。当node!=null时,即在scanAndLockForPut()获取锁时,已经新建了key-value对应的HashEntry节点,则”将HashEntry添加到Segment中“;否则,新建key-value对应的HashEntry节点,然后再“将HashEntry添加到Segment中”。 在”将HashEntry添加到Segment中“前,会判断是否需要rehash。如果在添加key-value键值之后,容量会超过阈值,并且HashEntry数组的长度没有超过限制,则进行rehash;否则,直接通过setEntryAt()将key-value键值对添加到Segment中。

在介绍rehash()和setEntryAt()之前,我们先看看自旋函数scanAndLockForPut()。下面是它的源码:

复制代码
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {    // 第一个HashEntry节点    HashEntry<K,V> first = entryForHash(this, hash);    // 当前的HashEntry节点    HashEntry<K,V> e = first;    HashEntry<K,V> node = null;    // 重复计数(自旋计数器)    int retries = -1; // negative while locating node    // 查找”key-value键值对“在”HashEntry链表上对应的节点“;    // 若找到的话,则不断的自旋;在自旋期间,若通过tryLock()获取锁成功则返回;否则自旋MAX_SCAN_RETRIES次数之后,强制获取”锁“并退出。    // 若没有找到的话,则新建一个HashEntry链表。然后不断的自旋。    // 此外,若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋工作!    while (!tryLock()) {        HashEntry<K,V> f; // to recheck first below        // 1. retries<0的处理情况        if (retries < 0) {            // 1.1 如果当前的HashEntry节点为空(意味着,在该HashEntry链表上上没有找到”要插入的键值对“对应的节点),而且node=null;则新建HashEntry链表。            if (e == null) {                if (node == null) // speculatively create node                    node = new HashEntry<K,V>(hash, key, value, null);                retries = 0;            }            // 1.2 如果当前的HashEntry节点是”要插入的键值对在该HashEntry上对应的节点“,则设置retries=0            else if (key.equals(e.key))                retries = 0;            // 1.3 设置为下一个HashEntry。            else                e = e.next;        }        // 2. 如果自旋次数超过限制,则获取“锁”并退出        else if (++retries > MAX_SCAN_RETRIES) {            lock();            break;        }        // 3. 当“尝试了偶数次”时,就获取“当前Segment的第一个HashEntry”,即f。        // 然后,通过f!=first来判断“当前Segment的第一个HashEntry是否发生了改变”。        // 若是的话,则重置e,first和retries的值,并重新遍历。        else if ((retries & 1) == 0 &&                 (f = entryForHash(this, hash)) != first) {            e = first = f; // re-traverse if entry changed            retries = -1;        }    }    return node;}
复制代码

说明
scanAndLockForPut()的目标是获取锁。流程如下:
    它首先会调用entryForHash(),根据hash值获取”当前Segment中对应的HashEntry节点(first),即找到对应的HashEntry链表“。
    紧接着进入while循环。在while循环中,它会遍历”HashEntry链表(e)“,查找”要插入的key-value键值对“在”该HashEntry链表上对应的节点“。
         若找到的话,则不断的自旋,即不断的执行while循环。在自旋期间,若通过tryLock()获取锁成功则返回;否则,在自旋MAX_SCAN_RETRIES次数之后,强制获取锁并退出。
         若没有找到的话,则新建一个HashEntry链表,然后不断的自旋。在自旋期间,若通过tryLock()获取锁成功则返回;否则,在自旋MAX_SCAN_RETRIES次数之后,强制获取锁并退出。
     此外,若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋工作!

理解scanAndLockForPut()时,务必要联系”哈希表“的数据结构。一个Segment本身就是一个哈希表,Segment中包含了”HashEntry数组“对象,而每一个HashEntry对象本身是一个”单向链表“。

 

下面看看rehash()的实现代码。

复制代码
private void rehash(HashEntry<K,V> node) {    HashEntry<K,V>[] oldTable = table;    // ”Segment中原始的HashEntry数组的长度“    int oldCapacity = oldTable.length;    // ”Segment中新HashEntry数组的长度“    int newCapacity = oldCapacity << 1;    // 新的阈值    threshold = (int)(newCapacity * loadFactor);    // 新的HashEntry数组    HashEntry<K,V>[] newTable =        (HashEntry<K,V>[]) new HashEntry[newCapacity];    int sizeMask = newCapacity - 1;    // 遍历”原始的HashEntry数组“,    // 将”原始的HashEntry数组“中的每个”HashEntry链表“的值,都复制到”新的HashEntry数组的HashEntry元素“中。    for (int i = 0; i < oldCapacity ; i++) {        // 获取”原始的HashEntry数组“中的”第i个HashEntry链表“        HashEntry<K,V> e = oldTable[i];        if (e != null) {            HashEntry<K,V> next = e.next;            int idx = e.hash & sizeMask;            if (next == null)   //  Single node on list                newTable[idx] = e;            else { // Reuse consecutive sequence at same slot                HashEntry<K,V> lastRun = e;                int lastIdx = idx;                for (HashEntry<K,V> last = next;                     last != null;                     last = last.next) {                    int k = last.hash & sizeMask;                    if (k != lastIdx) {                        lastIdx = k;                        lastRun = last;                    }                }                newTable[lastIdx] = lastRun;                // 将”原始的HashEntry数组“中的”HashEntry链表(e)“的值,都复制到”新的HashEntry数组的HashEntry“中。                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {                    V v = p.value;                    int h = p.hash;                    int k = h & sizeMask;                    HashEntry<K,V> n = newTable[k];                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);                }            }        }    }    // 将新的node节点添加到“Segment的新HashEntry数组(newTable)“中。    int nodeIndex = node.hash & sizeMask; // add the new node    node.setNext(newTable[nodeIndex]);    newTable[nodeIndex] = node;    table = newTable;}
复制代码

说明:rehash()的作用是将”Segment的容量“变为”原始的Segment容量的2倍“。
在将原始的数据拷贝到“新的Segment”中后,会将新增加的key-value键值对添加到“新的Segment”中。

setEntryAt()的源码如下:

static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,                                   HashEntry<K,V> e) {    UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);}

UNSAFE是Segment类中定义的“静态sun.misc.Unsafe”对象。源码如下:

static final sun.misc.Unsafe UNSAFE;

Unsafe.java在openjdk6中的路径是:openjdk6/jdk/src/share/classes/sun/misc/Unsafe.java。其中,putOrderedObject()的源码下:

public native void putOrderedObject(Object o, long offset, Object x);

说明:putOrderedObject()是一个本地方法。 
它会设置obj对象中offset偏移地址对应的object型field的值为指定值。它是一个有序或者有延迟的putObjectVolatile()方法,并且不保证值的改变被其他线程立即看到。只有在field被volatile修饰并且期望被意外修改的时候,使用putOrderedObject()才有用。

总之,setEntryAt()的目的是设置tab中第i位置元素的值为e,且该设置会有延迟。

 

4 删除

下面以remove(Object key)来对ConcurrentHashMap中的删除操作来进行说明。

public V remove(Object key) {    int hash = hash(key);    // 根据hash值,找到key对应的Segment片段。    Segment<K,V> s = segmentForHash(hash);    return s == null ? null : s.remove(key, hash, null);}

说明:remove()首先根据“key的计算出来的哈希值”找到对应的Segment片段,然后再从该Segment片段中删除对应的“key-value键值对”。

remove()的方法如下:

复制代码
final V remove(Object key, int hash, Object value) {    // 尝试获取Segment对应的锁。    // 尝试失败的话,则通过scanAndLock()来获取锁。    if (!tryLock())        scanAndLock(key, hash);    V oldValue = null;    try {        // 根据“hash值”找到“Segment的HashEntry数组”中对应的“HashEntry节点(e)”,该HashEntry节点是一HashEntry个链表。        HashEntry<K,V>[] tab = table;        int index = (tab.length - 1) & hash;        HashEntry<K,V> e = entryAt(tab, index);        HashEntry<K,V> pred = null;        // 遍历“HashEntry链表”,删除key-value键值对        while (e != null) {            K k;            HashEntry<K,V> next = e.next;            if ((k = e.key) == key ||                (e.hash == hash && key.equals(k))) {                V v = e.value;                if (value == null || value == v || value.equals(v)) {                    if (pred == null)                        setEntryAt(tab, index, next);                    else                        pred.setNext(next);                    ++modCount;                    --count;                    oldValue = v;                }                break;            }            pred = e;            e = next;        }    } finally {        // 释放锁        unlock();    }    return oldValue;}
复制代码

说明remove()的目的就是删除key-value键值对。在删除之前,它会获取到Segment的互斥锁,在删除之后,再释放锁。
它的删除过程也比较简单,它会先根据hash值,找到“Segment的HashEntry数组”中对应的“HashEntry”节点。根据Segment的数据结构,我们知道Segment中包含一个HashEntry数组对象,而每一个HashEntry本质上是一个单向链表。 在找到“HashEntry”节点之后,就遍历该“HashEntry”节点对应的链表,找到key-value键值对对应的节点,然后删除。

下面对scanAndLock()进行说明。它的源码如下:

复制代码
private void scanAndLock(Object key, int hash) {    // 第一个HashEntry节点    HashEntry<K,V> first = entryForHash(this, hash);    HashEntry<K,V> e = first;    int retries = -1;    // 查找”key-value键值对“在”HashEntry链表上对应的节点“;    // 无论找没找到,最后都会不断的自旋;在自旋期间,若通过tryLock()获取锁成功则返回;否则自旋MAX_SCAN_RETRIES次数之后,强制获取”锁“并退出。    // 若在自旋期间,HashEntry链表的表头发生变化;则重新进行查找和自旋!    while (!tryLock()) {        HashEntry<K,V> f;        if (retries < 0) {            // 如果“遍历完该HashEntry链表,仍然没找到”要删除的键值对“对应的节点”            // 或者“在该HashEntry链表上找到”要删除的键值对“对应的节点”,则设置retries=0            // 否则,设置e为下一个HashEntry节点。            if (e == null || key.equals(e.key))                retries = 0;            else                e = e.next;        }        // 自旋超过限制次数之后,获取锁并退出。        else if (++retries > MAX_SCAN_RETRIES) {            lock();            break;        }        // 当“尝试了偶数次”时,就获取“当前Segment的第一个HashEntry”,即f。        // 然后,通过f!=first来判断“当前Segment的第一个HashEntry是否发生了改变”。        // 若是的话,则重置e,first和retries的值,并重新遍历。        else if ((retries & 1) == 0 &&                 (f = entryForHash(this, hash)) != first) {            e = first = f;            retries = -1;        }    }}
复制代码

说明scanAndLock()的目标是获取锁。它的实现与scanAndLockForPut()类似,这里就不再过多说明。

 

总结ConcurrentHashMap是线程安全的哈希表,它是通过“锁分段”来实现的。ConcurrentHashMap中包括了“Segment(锁分段)数组”,每个Segment就是一个哈希表,而且也是可重入的互斥锁。第一,Segment是哈希表表现在,Segment包含了“HashEntry数组”,而“HashEntry数组”中的每一个HashEntry元素是一个单向链表。即Segment是通过链式哈希表。第二,Segment是可重入的互斥锁表现在,Segment继承于ReentrantLock,而ReentrantLock就是可重入的互斥锁。
对于ConcurrentHashMap的添加,删除操作,在操作开始前,线程都会获取Segment的互斥锁;操作完毕之后,才会释放。而对于读取操作,它是通过volatile去实现的,HashEntry数组是volatile类型的,而volatile能保证“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”,即我们总能读到其它线程写入HashEntry之后的值。 以上这些方式,就是ConcurrentHashMap线程安全的实现原理。

 

ConcurrentHashMap示例

下面,我们通过一个例子去对比HashMap和ConcurrentHashMap。

复制代码
 1 import java.util.*; 2 import java.util.concurrent.*; 3  4 /* 5  *   ConcurrentHashMap是“线程安全”的哈希表,而HashMap是非线程安全的。 6  * 7  *   下面是“多个线程同时操作并且遍历map”的示例 8  *   (01) 当map是ConcurrentHashMap对象时,程序能正常运行。 9  *   (02) 当map是HashMap对象时,程序会产生ConcurrentModificationException异常。10  *11  * @author skywang12  */13 public class ConcurrentHashMapDemo1 {14 15     // TODO: map是HashMap对象时,程序会出错。16     //private static Map<String, String> map = new HashMap<String, String>();17     private static Map<String, String> map = new ConcurrentHashMap<String, String>();18     public static void main(String[] args) {19     20         // 同时启动两个线程对map进行操作!21         new MyThread("ta").start();22         new MyThread("tb").start();23     }24 25     private static void printAll() {26         String key, value;27         Iterator iter = map.entrySet().iterator();28         while(iter.hasNext()) {29             Map.Entry entry = (Map.Entry)iter.next();30             key = (String)entry.getKey();31             value = (String)entry.getValue();32             System.out.print(key+" - "+value+", ");33         }34         System.out.println();35     }36 37     private static class MyThread extends Thread {38         MyThread(String name) {39             super(name);40         }41         @Override42         public void run() {43                 int i = 0;44             while (i++ < 6) {45                 // “线程名” + "-" + "序号"46                 String val = Thread.currentThread().getName()+i;47                 map.put(String.valueOf(i), val);48                 // 通过“Iterator”遍历map。49                 printAll();50             }51         }52     }53 }
复制代码

(某一次)运行结果

复制代码
1 - tb1, 1 - tb1, 1 - tb1, 1 - tb1, 2 - tb2, 2 - tb2, 1 - tb1, 3 - ta3, 1 - tb1, 2 - tb2, 3 - tb3, 1 - tb1, 2 - tb2, 3 - tb3, 1 - tb1, 4 - tb4, 3 - tb3, 2 - tb2, 4 - tb4, 1 - tb1, 2 - tb2, 5 - ta5, 1 - tb1, 3 - tb3, 5 - tb5, 4 - tb4, 3 - tb3, 2 - tb2, 4 - tb4, 1 - tb1, 2 - tb2, 5 - tb5, 1 - tb1, 6 - tb6, 5 - tb5, 3 - tb3, 6 - tb6, 4 - tb4, 3 - tb3, 2 - tb2, 4 - tb4, 2 - tb2, 
复制代码

结果说明如果将源码中的map改成HashMap对象时,程序会产生ConcurrentModificationException异常。

 


更多内容

1. Java多线程系列--“JUC集合”01之 框架

2. Java多线程系列--“JUC集合”02之 CopyOnWriteArrayList

3. Java多线程系列--“JUC集合”03之 CopyOnWriteArraySet

4. Java多线程系列目录(共xx篇)

0 0
原创粉丝点击