C语言实现压缩二例

来源:互联网 发布:中国大数据专家委员会 编辑:程序博客网 时间:2024/05/29 16:32

一 简单字符串压缩

编写一个字符串压缩程序,将字符串中连续出席的重复字母进行压缩,并输出压缩后的字符串。

压缩规则:

1、仅压缩连续重复出现的字符。比如字符串”abcbc”由于无连续重复字符,压缩后的字符串还是”abcbc”。
2、压缩字段的格式为”字符重复的次数+字符”。例如:字符串”xxxyyyyyyz”压缩后就成为”3x6yz”。

#include <stdio.h>#include <string.h>#include <stdlib.h>int main(){     char str[100] = {'\0'};    char res[100] = {'\0'};    scanf("%s",str);    int length = strlen(str);    int i=0, j=0, k=0;    int count = 0;    do    {        if(i < length && str[i++] == str[j])            count++;        if(str[i] != str[j])        {            if(count <= 1)                res[k++] = str[j];            else            {                if(count > 1)                {                    char temp[10] = {'\0'};                    itoa(count,temp,10);                    strcpy(res+k,temp);                    k+=strlen(temp);                    res[k++] = str[j];                }            }            j = i;            count = 0;        }    }while(i<length);    res[k] = '\0';    printf("The result is : %s\n",res);    return 0;}


运行情况:

二 哈夫曼编码

哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。 在计算机信息处理中,
“哈夫曼编码”是一种一致性编码法(又称“熵编码法”),用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。这种方法是由David.A.Huffman发展起来的。 例如,在英文中,e的出现概率很高,而z的出现概率则最低。当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个位
哈弗曼编码在信息论中应用举例哈弗曼编码在信息论中应用举例
(bit)来表示,而z则可能花去25个位(不是26)。用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个位。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。若能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。

//用C语言实现Huffman编码,并计算本节中块的编码//长度(以位为单位),计算Huffman编码的压缩比。//主程序:#include<stdio.h>#include<stdlib.h>typedef struct HfTreeNode{int weight; //权重int parent; //父节点int lchild, rchild;   //两个子节点}Struct, *HfStruct;typedef struct{char code[10];int start;}HCodeType;void quanDCT(short(*data)[8], short(*result)[8]);//量化函数int calWeight(short(*result), int(*Node), int(*Weight));//权重计算void print_data_screen(short data[8][8]);//数据打印//待编码数据short DctData[8][8] = {{ 1149, 38, -43, -10, 25, -83, 10, 40 },{ -81, -3, 114, -73, -6, -2, 21, -5 },{ 13, -11, 0, -42, 25, -3, 16, -38 },{ 1, -61, -13, -12, 35, -23, -18, 4 },{ 43, 12, 36, -4, 9, -21, 6, -8 },{ 35, -11, -9, -4, 19, -28, -21, 13 },{ -19, -7, 20, -6, 2, 2, 11, -21 },{ -5, -13, -11, -17, -4, -1, 6, -4 } };HfStruct create_HuffmanTree(int *WeightPoint, int n);//霍夫曼树创建函数void HuffmanCoding(HfStruct HT, HCodeType HuffCode[], int n);//霍夫曼编码函数void main(){int i, j;//循环变量int Length;//编码节点数int totalbits = 0;//计算编码后的总的比特数int Node[64];//节点数组int Weight[64];//权重数组short QuanResult[8][8];//量化结果存储quanDCT(DctData, QuanResult);//数据量化printf("量化后的数据:\n");//打印量化数据print_data_screen(QuanResult);Length = calWeight(*QuanResult, Node, Weight);//计算量化数据的节点与权重,并返回节点数int *maNode = (int*)malloc(Length*sizeof(int));//按有效节点进行分配int *maWeight = (int*)malloc(Length*sizeof(int));//按有效节点进行分配for (i = 0; i<Length; i++){*(maNode + i) = Node[i];//拷贝有效节点*(maWeight + i) = Weight[i];//拷贝有效权重}//根据权重与有效节点数创建霍夫曼树HfStruct p = create_HuffmanTree(maWeight, Length);//打印霍夫曼树printf("霍夫曼树:\n");for (i = 0; i<2 * Length - 1; i++)printf("父节点:%3d,左子节点:%3d,右子节点:%3d,权重:%3d\n", p[i].parent, p[i].lchild, p[i].rchild, p[i].weight);HCodeType code[9];//依据霍夫曼树进行编码HuffmanCoding(p, code, Length);//霍夫曼编码//打印出编码结果printf("\n编码结果:\n");for (i = 0; i<Length; i++){printf("节点:%3d,权重:%3d,编码:", *(maNode + i), *(maWeight + i));for (j = code[i].start + 1; j < Length; j++)printf("%c", code[i].code[j]);printf("\n");}//计算编码后的总的比特数,计算压缩比for (i = 0; i<Length; i++){j = Length - 1 - code[i].start;totalbits = totalbits + maWeight[i] * j;}printf("\n编码后的总位数为:%d,压缩比为:%4.2f\n", totalbits, (double)(64 * 8) / totalbits);while (1);}short QuanTable[8][8] = {{ 16, 11, 10, 16, 24, 40, 51, 61 },{ 12, 12, 14, 19, 26, 58, 60, 55 },{ 14, 13, 16, 24, 40, 57, 69, 56 },{ 14, 17, 22, 29, 51, 87, 80, 62 },{ 18, 22, 37, 56, 68, 109, 103, 77 },{ 24, 35, 55, 64, 81, 104, 113, 92 },{ 49, 64, 78, 87, 103, 121, 120, 101 },{ 72, 92, 95, 98, 112, 100, 103, 99 }};//量化表void print_data_screen(short data[8][8])//数据打印{int x, y;for (x = 0; x<8; x++)for (y = 0; y<8; y++){printf("%d", data[x][y]);if (y == 7){if (x == 7)printf("\n\n");elseprintf("\n");}else{printf(",");}}}void quanDCT(short(*data)[8], short(*result)[8])//数据量化{int x, y;for (x = 0; x<8; x++){for (y = 0; y<8; y++){*(*(result + x) + y) = (short)(double(*(*(data + x) + y)) / QuanTable[x][y] + 0.5);}}}int calWeight(short(*result), int *Node, int *Weigh)//计算权重{int x, y, i, find = 0;for (x = 0; x<64; x++){Node[x] = 0;Weigh[x] = 0;}Node[0] = (*result);Weigh[0] = 1;i = 0;for (x = 1; x<64; x++){for (y = 0; y <= i; y++){if (*(x + result) == Node[y]){Weigh[y]++;find = 1;break;}}if (find){find = 0;continue;}else{i++;Node[y] = *(x + result);Weigh[y]++;}}return i + 1;}/*从HtStruct选出权重最小,并且没有父节点的节点*/int WeightMinNode(HfStruct HtStruct, int Mum){int i = 0;  //序号, 循环用int min;        //最小权重序号int MinWeight; //最小权重//首先选择一个节点,用于比较出最小的一个while (HtStruct[i].parent != -1)i++;MinWeight = HtStruct[i].weight;min = i;//选出weight最小且parent为-1的元素,并将其序号赋给min  for (; i<Mum; i++){if (HtStruct[i].weight<MinWeight&&HtStruct[i].parent == -1){MinWeight = HtStruct[i].weight;min = i;}}//选出weight最小的元素后,将其parent置1,使得下一次比较时将其排除在外。HtStruct[min].parent = 1;return min;}/*从HtStruct数组的前k个元素中选出weight最小且parent为-1的两个,分别将其序号保存在min1和min2中*/void ChoseMinium2(HfStruct HtStruct, int Mum, int *min1, int *min2){*min1 = WeightMinNode(HtStruct, Mum);*min2 = WeightMinNode(HtStruct, Mum);}/*根据给定的n个权值构造一棵赫夫曼树*/HfStruct create_HuffmanTree(int *WeightPoint, int n){//一棵有n个叶子节点的赫夫曼树共有2n-1个节点int AllNodeNum = 2 * n - 1;HfStruct HT = (HfStruct)malloc(AllNodeNum*sizeof(Struct));int i;//叶子节点初始化,将传入的数据加载到叶子节点上for (i = 0; i<n; i++){HT[i].parent = -1;HT[i].lchild = -1;HT[i].rchild = -1;HT[i].weight = *WeightPoint;WeightPoint++;}//HT[n],HT[n+1]...HT[2n-2]中存放的是中间构造出的每棵二叉树的根节点for (; i<AllNodeNum; i++){HT[i].parent = -1;  //父节点初始化HT[i].lchild = -1;  //左子节点初始化HT[i].rchild = -1;  //右子节点初始化HT[i].weight = 0;   //权重初始化}int min1, min2;int *ad_min1 = &min1;//用于传递最小权重的节点int *ad_min2 = &min2; //用于传递最小权重的节点//每一轮比较后选择出min1和min2构成一课二叉树,最后构成一棵赫夫曼树for (i = n; i<AllNodeNum; i++){ChoseMinium2(HT, i, ad_min1, ad_min2); //选出权重最小的两个节点HT[min1].parent = i;  //父节点赋值HT[min2].parent = i;  //父节点赋值HT[i].lchild = min1;  //左子节点赋值HT[i].rchild = min2;  //右子节点赋值HT[i].weight = HT[min1].weight + HT[min2].weight;  //权重为两个子节点权重之和}return HT;}/*从叶子节点到根节点逆向求赫夫曼树HT中n个叶子节点的赫夫曼编码,并保存在code中*/void HuffmanCoding(HfStruct HT, HCodeType HuffCode[], int n){HCodeType cd;int i,j,current,father;for (i = 0; i<n; i++){cd.start = n - 1;current = i;           //定义当前访问的节点father = HT[i].parent; //当前节点的父节点//从叶子节点向上搜索while (father != -1){if (HT[father].lchild == current)   //如果是左子节点,则编码为0  cd.code[cd.start--] = '0';else//如果是右子节点,则编码为1         cd.code[cd.start--] = '1';current = father;father = HT[father].parent;}for (j = cd.start + 1; j <n; j++)HuffCode[i].code[j] = cd.code[j];HuffCode[i].start = cd.start;}}


0 0
原创粉丝点击