Android6.0 X86 ARM64位可用的注入Inject

来源:互联网 发布:公交车刷卡软件 编辑:程序博客网 时间:2024/06/07 02:24

最近在网上搜索Android的Inject与Hook,发现很多都因为时间久远而失效了,试了很多方案,最终找到了一个,特地来转载分享一下,本人的三星S6 6.0.1系统测试可用,另外4.2 4.4也都测试通过。

另外加上了注释便于大家理解。

转自 http://blog.csdn.net/jinzhuojun/article/details/9900105


1.inject.c

#include <stdio.h>    #include <stdlib.h>    #include <sys/user.h>    #include <asm/ptrace.h>    #include <sys/ptrace.h>    #include <sys/wait.h>    #include <sys/mman.h>    #include <dlfcn.h>    #include <dirent.h>    #include <unistd.h>    #include <string.h>    #include <elf.h>    #include <android/log.h>    #include <sys/uio.h>    #if defined(__i386__)    #define pt_regs         user_regs_struct    #elif defined(__aarch64__)#define pt_regs         user_pt_regs  #define uregsregs#define ARM_pcpc#define ARM_spsp#define ARM_cpsrpstate#define ARM_lrregs[30]#define ARM_r0regs[0]  #define PTRACE_GETREGS PTRACE_GETREGSET#define PTRACE_SETREGS PTRACE_SETREGSET#endif        #define ENABLE_DEBUG 1        #if ENABLE_DEBUG    #define  LOG_TAG "INJECT"    #define  LOGD(fmt, args...)  __android_log_print(ANDROID_LOG_DEBUG,LOG_TAG, fmt, ##args)    #define DEBUG_PRINT(format,args...) \        LOGD(format, ##args)    #else    #define DEBUG_PRINT(format,args...)    #endif        #define CPSR_T_MASK     ( 1u << 5 )        #if defined(__aarch64__)    const char *libc_path = "/system/lib64/libc.so";    const char *linker_path = "/system/bin/linker64";    #elseconst char *libc_path = "/system/lib/libc.so";    const char *linker_path = "/system/bin/linker";    #endif    int ptrace_readdata(pid_t pid,  uint8_t *src, uint8_t *buf, size_t size)    {        long i, j, remain;        uint8_t *laddr;           size_t bytes_width = sizeof(long);    union u {            long val;            char chars[bytes_width];        } d;            j = size / bytes_width;        remain = size % bytes_width;            laddr = buf;            for (i = 0; i < j; i ++) {            d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0);            memcpy(laddr, d.chars, bytes_width);            src += bytes_width;            laddr += bytes_width;        }            if (remain > 0) {            d.val = ptrace(PTRACE_PEEKTEXT, pid, src, 0);            memcpy(laddr, d.chars, remain);        }            return 0;    }    /*Func : 将size字节的data数据写入到pid进程的dest地址处@param dest: 目的进程的栈地址@param data: 需要写入的数据的起始地址@param size: 需要写入的数据的大小,以字节为单位*/int ptrace_writedata(pid_t pid, uint8_t *dest, uint8_t *data, size_t size)    {        long i, j, remain;        uint8_t *laddr;        size_t bytes_width = sizeof(long);//很巧妙的联合体,这样就可以方便的以字节为单位写入4字节数据,再以long为单位ptrace_poketext到栈中      union u {            long val;            char chars[bytes_width];        } d;            j = size / bytes_width;        remain = size % bytes_width;            laddr = data;//先以4字节为单位进行数据写入        for (i = 0; i < j; i ++) {            memcpy(d.chars, laddr, bytes_width);            ptrace(PTRACE_POKETEXT, pid, dest, d.val);                dest  += bytes_width;            laddr += bytes_width;        }            if (remain > 0) {//为了最大程度的保持原栈的数据,先读取dest的long数据,然后只更改其中的前remain字节,再写回        d.val = ptrace(PTRACE_PEEKTEXT, pid, dest, 0);            for (i = 0; i < remain; i ++) {                d.chars[i] = *laddr ++;            }                ptrace(PTRACE_POKETEXT, pid, dest, d.val);       }            return 0;    }    /*功能总结:1,将要执行的指令写入寄存器中,指令长度大于4个long的话,需要将剩余的指令通过ptrace_writedata函数写入栈中;2,使用ptrace_continue函数运行目的进程,直到目的进程返回状态值0xb7f(对该值的分析见后面红字);3,函数执行完之后,目标进程挂起,使用ptrace_getregs函数获取当前的所有寄存器值,方便后面使用ptrace_retval函数获取函数的返回值。*/#if defined(__arm__) || defined(__aarch64__)int ptrace_call(pid_t pid, uintptr_t addr, long *params, int num_params, struct pt_regs* regs)    {        int i;   #if defined(__arm__)     int num_param_registers = 4;#elif defined(__aarch64__)     int num_param_registers = 8;#endif    for (i = 0; i < num_params && i < num_param_registers; i ++) {            regs->uregs[i] = params[i];        }            //        // push remained params onto stack        //        if (i < num_params) {            regs->ARM_sp -= (num_params - i) * sizeof(long) ;            ptrace_writedata(pid, (void *)regs->ARM_sp,(uint8_t *)& params[i], (num_params - i) * sizeof(long));        }        //将PC寄存器值设为目标函数的地址    regs->ARM_pc = addr; //进行指令集判断     if (regs->ARM_pc & 1) {            /* thumb */            regs->ARM_pc &= (~1u);    // #define CPSR_T_MASK  ( 1u << 5 )  CPSR为程序状态寄存器        regs->ARM_cpsr |= CPSR_T_MASK;        } else {            /* arm */            regs->ARM_cpsr &= ~CPSR_T_MASK;        }        //设置子程序的返回地址为空,以便函数执行完后,返回到null地址,产生SIGSEGV错误,详细作用见后面的红字分析    regs->ARM_lr = 0;        /*    *Ptrace_setregs就是将修改后的regs写入寄存器中,然后调用ptrace_continue来执行我们指定的代码    */    if (ptrace_setregs(pid, regs) == -1                 || ptrace_continue(pid) == -1) {            printf("error\n");            return -1;        }            int stat = 0;      waitpid(pid, &stat, WUNTRACED);  /* WUNTRACED告诉waitpid,如果子进程进入暂停状态,那么就立即返回。如果是被ptrace的子进程,那么即使不提供WUNTRACED参数,也会在子进程进入暂停状态的时候立即返回。对于使用ptrace_cont运行的子进程,它会在3种情况下进入暂停状态:①下一次系统调用;②子进程退出;③子进程的执行发生错误。这里的0xb7f就表示子进程进入了暂停状态,且发送的错误信号为11(SIGSEGV),它表示试图访问未分配给自己的内存, 或试图往没有写权限的内存地址写数据。那么什么时候会发生这种错误呢?显然,当子进程执行完注入的函数后,由于我们在前面设置了regs->ARM_lr = 0,它就会返回到0地址处继续执行,这样就会产生SIGSEGV了!*/    //这个循环是否必须我还不确定。因为目前每次ptrace_call调用必定会返回0xb7f,不过在这也算是增加容错性吧~//通过看ndk的源码sys/wait.h以及man waitpid可以知道这个0xb7f的具体作用。首先说一下stat的值:高2字节用于表示导致子进程的退出或暂停状态信号值,低2字节表示子进程是退出(0x0)还是暂停(0x7f)状态。0xb7f就表示子进程为暂停状态,导致它暂停的信号量为11即sigsegv错误。while (stat != 0xb7f) {          if (ptrace_continue(pid) == -1) {              printf("error\n");              return -1;          }          waitpid(pid, &stat, WUNTRACED);      }          return 0;    }    #elif defined(__i386__)    long ptrace_call(pid_t pid, uintptr_t addr, long *params, int num_params, struct user_regs_struct * regs)    {        regs->esp -= (num_params) * sizeof(long) ;        ptrace_writedata(pid, (void *)regs->esp, (uint8_t *)params, (num_params) * sizeof(long));            long tmp_addr = 0x00;        regs->esp -= sizeof(long);        ptrace_writedata(pid, regs->esp, (char *)&tmp_addr, sizeof(tmp_addr));             regs->eip = addr;            if (ptrace_setregs(pid, regs) == -1                 || ptrace_continue( pid) == -1) {            printf("error\n");            return -1;        }            int stat = 0;      waitpid(pid, &stat, WUNTRACED);      while (stat != 0xb7f) {          if (ptrace_continue(pid) == -1) {              printf("error\n");              return -1;          }          waitpid(pid, &stat, WUNTRACED);      }          return 0;    }    #else     #error "Not supported"    #endif        int ptrace_getregs(pid_t pid, struct pt_regs * regs)    {    #if defined (__aarch64__)int regset = NT_PRSTATUS;struct iovec ioVec;ioVec.iov_base = regs;ioVec.iov_len = sizeof(*regs);    if (ptrace(PTRACE_GETREGSET, pid, (void*)regset, &ioVec) < 0) {            perror("ptrace_getregs: Can not get register values");           printf(" io %llx, %d", ioVec.iov_base, ioVec.iov_len);         return -1;        }            return 0;   #else    if (ptrace(PTRACE_GETREGS, pid, NULL, regs) < 0) {            perror("ptrace_getregs: Can not get register values");            return -1;        }            return 0;   #endif     }        int ptrace_setregs(pid_t pid, struct pt_regs * regs)    {     #if defined (__aarch64__)int regset = NT_PRSTATUS;struct iovec ioVec;ioVec.iov_base = regs;ioVec.iov_len = sizeof(*regs);    if (ptrace(PTRACE_SETREGSET, pid, (void*)regset, &ioVec) < 0) {            perror("ptrace_setregs: Can not get register values");            return -1;        }            return 0;   #else    if (ptrace(PTRACE_SETREGS, pid, NULL, regs) < 0) {            perror("ptrace_setregs: Can not set register values");            return -1;        }            return 0;   #endif     }        int ptrace_continue(pid_t pid)    {        if (ptrace(PTRACE_CONT, pid, NULL, 0) < 0) {            perror("ptrace_cont");            return -1;        }            return 0;    }        int ptrace_attach(pid_t pid)    {        if (ptrace(PTRACE_ATTACH, pid, NULL, 0) < 0) {            perror("ptrace_attach");            return -1;        }            int status = 0;        waitpid(pid, &status , WUNTRACED);            return 0;    }        int ptrace_detach(pid_t pid)    {        if (ptrace(PTRACE_DETACH, pid, NULL, 0) < 0) {            perror("ptrace_detach");            return -1;        }            return 0;    }//显然,这里面核心的就是get_module_base函数:/*此函数的功能就是通过遍历/proc/pid/maps文件,来找到目的module_name的内存映射起始地址。由于内存地址的表达方式是startAddrxxxxxxx-endAddrxxxxxxx的,所以会在后面使用strtok(line,"-")来分割字符串如果pid = -1,表示获取本地进程的某个模块的地址,否则就是pid进程的某个模块的地址。*/        void* get_module_base(pid_t pid, const char* module_name)    {        FILE *fp;        long addr = 0;        char *pch;        char filename[32];        char line[1024];            if (pid < 0) {            /* self process */            snprintf(filename, sizeof(filename), "/proc/self/maps", pid);        } else {            snprintf(filename, sizeof(filename), "/proc/%d/maps", pid);        }            fp = fopen(filename, "r");            if (fp != NULL) {            while (fgets(line, sizeof(line), fp)) {                if (strstr(line, module_name)) {//分解字符串为一组字符串。line为要分解的字符串,"-"为分隔符字符串。                pch = strtok( line, "-" );//将参数pch字符串根据参数base(表示进制)来转换成无符号的长整型数                  addr = strtoull( pch, NULL, 16 );                       if (addr == 0x8000)                        addr = 0;                        break;                }            }                fclose(fp) ;        }            return (void *)addr;    }    /*该函数为一个封装函数,通过调用get_module_base函数来获取目的进程的某个模块的起始地址,然后通过公式计算出指定函数在目的进程的起始地址。*/void* get_remote_addr(pid_t target_pid, const char* module_name, void* local_addr)    {        void* local_handle, *remote_handle;     //获取本地某个模块的起始地址    local_handle = get_module_base(-1, module_name);    //获取远程pid的某个模块的起始地址    remote_handle = get_module_base(target_pid, module_name);            DEBUG_PRINT("[+] get_remote_addr: local[%llx], remote[%llx]\n", local_handle, remote_handle);        /*这需要我们好好理解:local_addr - local_handle的值为指定函数(如mmap)在该模块中的偏移量,然后再加上rempte_handle,结果就为指定函数在目的进程的虚拟地址*/    void * ret_addr = (void *)((uintptr_t)local_addr + (uintptr_t)remote_handle - (uintptr_t)local_handle);        #if defined(__i386__)        if (!strcmp(module_name, libc_path)) {            ret_addr += 2;        }    #endif        return ret_addr;    }    //根据name找到pidint find_pid_of(const char *process_name)    {        int id;        pid_t pid = -1;        DIR* dir;        FILE *fp;        char filename[32];        char cmdline[256];            struct dirent * entry;            if (process_name == NULL)            return -1;            dir = opendir("/proc");        if (dir == NULL)            return -1;            while((entry = readdir(dir)) != NULL) {            id = atoi(entry->d_name);            if (id != 0) {                sprintf(filename, "/proc/%d/cmdline", id);                fp = fopen(filename, "r");                if (fp) {                    fgets(cmdline, sizeof(cmdline), fp);                    fclose(fp);                        if (strcmp(process_name, cmdline) == 0) {                        /* process found */                        pid = id;                        break;                    }                }            }        }            closedir(dir);        return pid;    }        uint64_t ptrace_retval(struct pt_regs * regs)    {    #if defined(__arm__) || defined(__aarch64__)    return regs->ARM_r0;    #elif defined(__i386__)        return regs->eax;    #else    #error "Not supported"    #endif    }        uint64_t ptrace_ip(struct pt_regs * regs)    {    #if defined(__arm__) || defined(__aarch64__)     return regs->ARM_pc;   #elif defined(__i386__)        return regs->eip;    #else    #error "Not supported"    #endif    }    //总结一下ptrace_call_wrapper,它的完成两个功能://一是调用ptrace_call函数来执行指定函数,执行完后将子进程挂起;//二是调用ptrace_getregs函数获取所有寄存器的值,主要是为了获取r0即函数的返回值。  int ptrace_call_wrapper(pid_t target_pid, const char * func_name, void * func_addr, long * parameters, int param_num, struct pt_regs * regs)     {        DEBUG_PRINT("[+] Calling %s in target process.\n", func_name);        if (ptrace_call(target_pid, (uintptr_t)func_addr, parameters, param_num, regs) == -1)            return -1;            if (ptrace_getregs(target_pid, regs) == -1)            return -1;        DEBUG_PRINT("[+] Target process returned from %s, return value=%llx, pc=%llx \n",                 func_name, ptrace_retval(regs), ptrace_ip(regs));        return 0;    }    //远程注入int inject_remote_process(pid_t target_pid, const char *library_path, const char *function_name, const char *param, size_t param_size)    {        int ret = -1;        void *mmap_addr, *dlopen_addr, *dlsym_addr, *dlclose_addr, *dlerror_addr;        void *local_handle, *remote_handle, *dlhandle;        uint8_t *map_base = 0;        uint8_t *dlopen_param1_ptr, *dlsym_param2_ptr, *saved_r0_pc_ptr, *inject_param_ptr, *remote_code_ptr, *local_code_ptr;            struct pt_regs regs, original_regs;         long parameters[10];            DEBUG_PRINT("[+] Injecting process: %d\n", target_pid);        //①ATTATCH,指定目标进程,开始调试    if (ptrace_attach(target_pid) == -1)            goto exit;       //②GETREGS,获取目标进程的寄存器,保存现场    if (ptrace_getregs(target_pid, &regs) == -1)            goto exit;            /* save original registers */        memcpy(&original_regs, &regs, sizeof(regs));    //③通过get_remote_addr函数获取目的进程的mmap函数的地址,以便为libxxx.so分配内存    /*需要对(void*)mmap进行说明:这是取得inject本身进程的mmap函数的地址,由于mmap函数在libc.so  库中,为了将libxxx.so加载到目的进程中,就需要使用目的进程的mmap函数,所以需要查找到libc.so库在目的进程的起始地址。*/    mmap_addr = get_remote_addr(target_pid, libc_path, (void *)mmap);        DEBUG_PRINT("[+] Remote mmap address: %llx\n", mmap_addr);/* call mmap (null, 0x4000, PROT_READ | PROT_WRITE | PROT_EXEC,                         MAP_ANONYMOUS | MAP_PRIVATE, 0, 0);匿名申请一块0x4000大小的内存*/    parameters[0] = 0;  // addr        parameters[1] = 0x4000; // size        parameters[2] = PROT_READ | PROT_WRITE | PROT_EXEC;  // prot        parameters[3] = MAP_ANONYMOUS | MAP_PRIVATE; // flags        parameters[4] = 0; //fd        parameters[5] = 0; //offset            if (ptrace_call_wrapper(target_pid, "mmap", mmap_addr, parameters, 6, &regs) == -1)            goto exit;        //⑤从寄存器中获取mmap函数的返回值,即申请的内存首地址:    map_base = ptrace_retval(&regs);      //⑥依次获取linker中dlopen、dlsym、dlclose、dlerror函数的地址:    dlopen_addr = get_remote_addr( target_pid, linker_path, (void *)dlopen );        dlsym_addr = get_remote_addr( target_pid, linker_path, (void *)dlsym );        dlclose_addr = get_remote_addr( target_pid, linker_path, (void *)dlclose );        dlerror_addr = get_remote_addr( target_pid, linker_path, (void *)dlerror );            DEBUG_PRINT("[+] Get imports: dlopen: %llx, dlsym: %llx, dlclose: %llx, dlerror: %llx\n",                dlopen_addr, dlsym_addr, dlclose_addr, dlerror_addr);            printf("library path = %s\n", library_path);    //⑦调用dlopen函数:/*①将要注入的so名写入前面mmap出来的内存②写入dlopen代码③执行dlopen("libxxx.so", RTLD_NOW ! RTLD_GLOBAL) RTLD_NOW之类的参数作用可参考:http://baike.baidu.com/view/2907309.htm?fr=aladdin ④取得dlopen的返回值,存放在sohandle变量中*/    ptrace_writedata(target_pid, map_base, library_path, strlen(library_path) + 1);              parameters[0] = map_base;           parameters[1] = RTLD_NOW| RTLD_GLOBAL;             if (ptrace_call_wrapper(target_pid, "dlopen", dlopen_addr, parameters, 2, &regs) == -1)            goto exit;            void * sohandle = ptrace_retval(&regs);        if(!sohandle) {    if (ptrace_call_wrapper(target_pid, "dlerror", dlerror_addr, 0, 0, &regs) == -1)            goto exit;                uint8_t *errret = ptrace_retval(&regs);      uint8_t errbuf[100];    ptrace_readdata(target_pid, errret, errbuf, 100);  }        //⑧调用dlsym函数/*等同于hook_entry_addr = (void *)dlsym(sohandle, "hook_entry");*/ #define FUNCTION_NAME_ADDR_OFFSET       0x100        ptrace_writedata(target_pid, map_base + FUNCTION_NAME_ADDR_OFFSET, function_name, strlen(function_name) + 1);        parameters[0] = sohandle;           parameters[1] = map_base + FUNCTION_NAME_ADDR_OFFSET;             if (ptrace_call_wrapper(target_pid, "dlsym", dlsym_addr, parameters, 2, &regs) == -1)            goto exit;            void * hook_entry_addr = ptrace_retval(&regs);        DEBUG_PRINT("hook_entry_addr = %p\n", hook_entry_addr);        //⑨调用hook_entry函数:#define FUNCTION_PARAM_ADDR_OFFSET      0x200        ptrace_writedata(target_pid, map_base + FUNCTION_PARAM_ADDR_OFFSET, param, strlen(param) + 1);        parameters[0] = map_base + FUNCTION_PARAM_ADDR_OFFSET;            if (ptrace_call_wrapper(target_pid, "hook_entry", hook_entry_addr, parameters, 1, &regs) == -1)            goto exit;                printf("Press enter to dlclose and detach\n");        getchar();        parameters[0] = sohandle;           //⑩调用dlclose关闭lib:    if (ptrace_call_wrapper(target_pid, "dlclose", dlclose, parameters, 1, &regs) == -1)            goto exit;            /* restore */    //⑪恢复现场并退出ptrace:    ptrace_setregs(target_pid, &original_regs);        ptrace_detach(target_pid);        ret = 0;        exit:        return ret;    }        int main(int argc, char** argv) {        pid_t target_pid;        target_pid = find_pid_of("system_server");    if (-1 == target_pid) {          printf("Can't find the process\n");          return -1;      }      //target_pid = find_pid_of("/data/test");        inject_remote_process(target_pid, "/data/libhello.so", "hook_entry",  "I'm parameter!", strlen("I'm parameter!"));        return 0;  }

Android.mk application.mk

APP_ABI :=arm64-v8a armeabi-v7a


LOCAL_PATH := $(call my-dir)    include $(CLEAR_VARS)  LOCAL_MODULE := inject   LOCAL_SRC_FILES := inject.c     #shellcode.s    LOCAL_LDLIBS += -L$(SYSROOT)/usr/lib -llog    #LOCAL_FORCE_STATIC_EXECUTABLE := true    include $(BUILD_EXECUTABLE)  

2.inject的测试so

#include <unistd.h>  #include <stdio.h>  #include <stdlib.h>  #include <android/log.h>  #include <elf.h>  #include <fcntl.h>    #define LOG_TAG "DEBUG"  #define LOGD(fmt, args...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, fmt, ##args)      int hook_entry(char * a){      LOGD("Hook success, pid = %d\n", getpid());      LOGD("Hello %s\n", a);      return 0;  }  




1 0
原创粉丝点击