数据库有关概念

来源:互联网 发布:mysql示例数据库下载 编辑:程序博客网 时间:2024/05/18 22:14
                 **数据库事务and范式**

数据库事务(Database Transaction) ,是指作为单个逻辑工作单元执行的一系列操作,要么完全地执行,要么完全地不执行。 事务处理可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源。通过将一组相关操作组合为一个要么全部成功要么全部失败的单元,可以简化错误恢复并使应用程序更加可靠。一个逻辑工作单元要成为事务,必须满足所谓的ACID(原子性、一致性、隔离性和持久性)属性。事务是数据库运行中的一个逻辑工作单位,由DBMS中的事务管理子系统负责事务的处理。
通俗的理解,事务是一组原子操作单元,从数据库角度说,就是一组SQL指令,要么全部执行成功,若因为某个原因其中一条指令执行有错误,则撤销先前执行过的所有指令。更简答的说就是:要么全部执行成功,要么撤销不执行。
原子性(Atomic)(Atomicity)
事务必须是原子工作单元;对于其数据修改,要么全都执行,要么全都不执行。通常,与某个事务关联的操作具有共同的目标,并且是相互依赖的。如果系统只执行这些操作的一个子集,则可能会破坏事务的总体目标。原子性消除了系统处理操作子集的可能性。
一致性(Consistent)(Consistency)
事务在完成时,必须使所有的数据都保持一致状态。在相关数据库中,所有规则都必须应用于事务的修改,以保持所有数据的完整性。事务结束时,所有的内部数据结构(如 B 树索引或双向链表)都必须是正确的。某些维护一致性的责任由应用程序开发人员承担,他们必须确保应用程序已强制所有已知的完整性约束。例如,当开发用于转帐的应用程序时,应避免在转帐过程中任意移动小数点。
隔离性(Insulation)(Isolation)
由并发事务所作的修改必须与任何其它并发事务所作的修改隔离。事务查看数据时数据所处的状态,要么是另一并发事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看中间状态的数据。这称为隔离性,因为它能够重新装载起始数据,并且重播一系列事务,以使数据结束时的状态与原始事务执行的状态相同。当事务可序列化时将获得最高的隔离级别。在此级别上,从一组可并行执行的事务获得的结果与通过连续运行每个事务所获得的结果相同。由于高度隔离会限制可并行执行的事务数,所以一些应用程序降低隔离级别以换取更大的吞吐量。
持久性(Duration)(Durability)
事务完成之后,它对于系统的影响是永久性的。该修改即使出现致命的系统故障也将一直保持。
二、为什么需要事务
事务是为解决数据安全操作提出的,事务控制实际上就是控制数据的安全访问。
A simple example:比如银行转帐业务,账户A要将自己账户上的1000元转到B账户下面,A账户余额首先要减去1000元,然后B账户要增加1000元。假如在中间网络出现了问题,A账户减去1000元已经结束,B因为网络中断而操作失败,那么整个业务失败,必须做出控制,要求A账户转帐业务撤销。这才能保证业务的正确性,完成这个操走就需要事务,将A账户资金减少和B账户资金增加方到一个事务里面,要么全部执行成功,要么操作全部撤销,这样就保持了数据的安全性。
事务有三种模型:
1.隐式事务
是指每一条数据操作语句都自动地成为一个事务,事务的开始是隐式的,事务的结束有明确的
标记。
2.显式事务
是指有显式的开始和结束标记的事务,每个事务都有显式的开始和结束标记。
3.自动事务
是系统自动默认的,开始和结束不用标记。
并发控制
1. 数据库系统一个明显的特点是多个用户共享数据库资源,尤其是多个用户可以同时存取相同数据。
串行控制:如果事务是顺序执行的,即一个事务完成之后,再开始另一个事务
并行控制:如果DBMS可以同时接受多个事务,并且这些事务在时间上可以重叠执行。
2.并发控制概述
事务是并发控制的基本单位,保证事务ACID的特性是事务处理的重要任务,而并发操作有可能会破坏其ACID特性。
DBMS并发控制机制的责任:
对并发操作进行正确调度,保证事务的隔离性更一般,确保数据库的一致性。
如果没有锁定且多个用户同时访问一个数据库,则当他们的事务同时使用相同的数据时可能会发生问题。由于并发操作带来的数据不一致性包括:丢失数据修改、读”脏”数据(脏读)、不可重复读、产生幽灵数据。
(1)丢失数据修改
当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,会发生丢失更新问题。每个事务都不知道其它事务的存在。最后的更新将重写由其它事务所做的更新,这将导致数据丢失。如上例。
再例如,两个编辑人员制作了同一文档的电子复本。每个编辑人员独立地更改其复本,然后保存更改后的复本,这样就覆盖了原始文档。最后保存其更改复本的编辑人员覆盖了第一个编辑人员所做的更改。如果在第一个编辑人员完成之后第二个编辑人员才能进行更改,则可以避免该问题。
(2)读“脏”数据(脏读)
读“脏”数据是指事务T1修改某一数据,并将其写回磁盘,事务T2读取同一数据后,T1由于某种原因被除撤消,而此时T1把已修改过的数据又恢复原值,T2读到的数据与数据库的数据不一致,则T2读到的数据就为“脏”数据,即不正确的数据。
例如:一个编辑人员正在更改电子文档。在更改过程中,另一个编辑人员复制了该文档(该复本包含到目前为止所做的全部更改)并将其分发给预期的用户。此后,第一个编辑人员认为所做的更改是错误的,于是删除了所做的编辑并保存了文档。分发给用户的文档包含不再存在的编辑内容,并且这些编辑内容应认为从未存在过。如果在第一个编辑人员确定最终更改前任何人都不能读取更改的文档,则可以避免该问题。
( 3)不可重复读
指事务T1读取数据后,事务T2执行更新操作,使T1无法读取前一次结果。不可重复读包括三种情况:
事务T1读取某一数据后,T2对其做了修改,当T1再次读该数据后,得到与前一不同的值。
(4)产生幽灵数据
按一定条件从数据库中读取了某些记录后,T2删除了其中部分记录,当T1再次按相同条件读取数据时,发现某些记录消失
T1按一定条件从数据库中读取某些数据记录后,T2插入了一些记录,当T1再次按相同条件读取数据时,发现多了一些记录。
一般处理并发问题时的步骤:
1、开启事务。
2、申请写权限,也就是给对象(表或记录)加锁。
3、假如失败,则结束事务,过一会重试。
4、假如成功,也就是给对象加锁成功,防止其他用户再用同样的方式打开。
5、进行编辑操作。
6、写入所进行的编辑结果。
7、假如写入成功,则提交事务,完成操作。
8、假如写入失败,则回滚事务,取消提交。
9、(7.8)两步操作已释放了锁定的对象,恢复到操作前的状态。
范式简介:
第一范式(1NF)
所谓第一范式(1NF)是指在关系模型中,对域添加的一个规范要求,所有的域都应该是原子性的,即数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项。即实体中的某个属性有多个值时,必须拆分为不同的属性。在符合第一范式(1NF)表中的每个域值只能是实体的一个属性或一个属性的一部分。简而言之,第一范式就是无重复的域。
说明:在任何一个关系数据库中,第一范式(1NF)是对关系模式的设计基本要求,一般设计中都必须满足第一范式(1NF)。不过有些关系模型中突破了1NF的限制,这种称为非1NF的关系模型。换句话说,是否必须满足1NF的最低要求,主要依赖于所使用的关系模型。
第二范式(2NF)
在1NF的基础上,非码属性必须完全依赖于候选码(在1NF基础上消除非主属性对主码的部分函数依赖)
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或记录必须可以被唯一地区分。选取一个能区分每个实体的属性或属性组,作为实体的唯一标识。例如在员工表中的身份证号码即可实现每个一员工的区分,该身份证号码即为候选键,任何一个候选键都可以被选作主键。在找不到候选键时,可额外增加属性以实现区分,如果在员工关系中,没有对其身份证号进行存储,而姓名可能会在数据库运行的某个时间重复,无法区分出实体时,设计辟如ID等不重复的编号以实现区分,被添加的编号或ID选作主键。(该主键的添加是在ER设计时添加,不是建库时随意添加)
第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的唯一标识。简而言之,第二范式就是在第一范式的基础上属性完全依赖于主键。
第三范式(3NF)
在1NF基础上,任何非主属性不依赖于其它非主属性(在2NF基础上消除传递依赖)
第三范式(3NF)是第二范式(2NF)的一个子集,即满足第三范式(3NF)必须满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个关系中不包含已在其它关系已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性,也就是在满足2NF的基础上,任何非主属性不得传递依赖于主属性。

0 0
原创粉丝点击