利用ANN来实现简单的深度神经网络

来源:互联网 发布:灌篮高手全国大赛数据 编辑:程序博客网 时间:2024/05/29 08:03

利用ANN,BP实现简单的深度学习的代码:

#! /usr/bin/env python# -*- coding=utf-8 -*-import mathimport randomimport stringrandom.seed(0)# 生成区间[a, b)内的随机数def rand(a, b):    return (b - a) * random.random() + a# 生成大小 I*J 的矩阵,默认零矩阵 (当然,亦可用 NumPy 提速)def makeMatrix(I, J, fill=0.0):    m = []    for i in range(I):        m.append([fill] * J)    return m# 函数 sigmoid,这里采用 tanh,因为看起来要比标准的 1/(1+e^-x) 漂亮些def sigmoid(x):    return math.tanh(x)# 函数 sigmoid 的派生函数, 为了得到输出 (即:y)def dsigmoid(y):    return 1.0 - y ** 2class NN:    ''' 三层反向传播神经网络 '''    def __init__(self, ni, nh, no):        # 输入层、隐藏层、输出层的节点(数)        self.ni = ni + 1  # 增加一个偏差节点 #3        self.nh = nh      #4        self.no = no      #1        # 激活神经网络的所有节点(向量)        self.ai = [1.0] * self.ni   #self.ni = 3,输入层有3个节点,初始化为[1.0, 1.0, 1.0]        self.ah = [1.0] * self.nh   #self.nh = 4,隐藏层有4个节点,初始化位[1.0, 1.0, 1.0, 1.0]        self.ao = [1.0] * self.no   #self.nh = 1,输出层有1个节点,初始化位[1.0]        # 建立权重(矩阵)        self.wi = makeMatrix(self.ni, self.nh)#输入层到隐藏层,3个到4个,权值:[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]        self.wo = makeMatrix(self.nh, self.no)#隐藏层到输出层,4个到1个,权值:[[0.0], [0.0], [0.0], [0.0]]        # 设为随机值        for i in range(self.ni):            for j in range(self.nh):                self.wi[i][j] = rand(-0.2, 0.2)        for j in range(self.nh):            for k in range(self.no):                self.wo[j][k] = rand(-2.0, 2.0)        print "随机权值"        print self.wi   # 随机后的权值:[[0.13776874061001926, 0.10318176117612099, -0.031771367667662004, -0.09643329988281467], [0.004509888547443414, -0.03802634501983429, 0.11351943561390904, -0.07867490956842903], [-0.009361218339057675, 0.03335281578201249, 0.16324515407813406, 0.0018747423269561136]]        print self.wo   #随机后的权值:[[-0.8726486224011847], [1.0232168166288957], [0.4734759867013265], [-0.9979746345502378]]        # 最后建立动量因子(矩阵)        self.ci = makeMatrix(self.ni, self.nh) #输入层到隐藏层,3个到4个,权值:[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]        self.co = makeMatrix(self.nh, self.no) #隐藏层到输出层,4个到1个,权值:[[0.0], [0.0], [0.0], [0.0]]#更新的函数    def update(self, inputs):        print "-----------update---------------"        if len(inputs) != self.ni - 1:            raise ValueError('与输入层节点数不符!')        # 激活输入层        print "----------self.ai--------"        for i in range(self.ni - 1):            # self.ai[i] = sigmoid(inputs[i])            self.ai[i] = inputs[i]            print "jihuo_input"            print self.ai[i]        print "---------self.nh---------"        # 激活隐藏层        for j in range(self.nh):#self.nh = 4            sum = 0.0            for i in range(self.ni):#self.ni = 3                sum = sum + self.ai[i] * self.wi[i][j]            self.ah[j] = sigmoid(sum)            print self.ah[j]        # 激活输出层        print "---------self.ao---------"        for k in range(self.no): # self.no = 1            sum = 0.0            for j in range(self.nh): #self.nh = 4                sum = sum + self.ah[j] * self.wo[j][k]            self.ao[k] = sigmoid(sum)        print "---------"        print self.ao[:]        print "---------"        return self.ao[:]#反向传播    def backPropagate(self, targets, N, M):        ''' 反向传播 '''        print targets        if len(targets) != self.no:            raise ValueError('与输出层节点数不符!')        # 计算输出层的误差        output_deltas = [0.0] * self.no  # 首先初始化误差值        for k in range(self.no):  # self.no = 1            error = targets[k] - self.ao[k]            output_deltas[k] = dsigmoid(self.ao[k]) * error        # 计算隐藏层的误差   #首先初始化误差值        hidden_deltas = [0.0] * self.nh        for j in range(self.nh):   #self.nh = 4            error = 0.0            for k in range(self.no): #self.no =1                error = error + output_deltas[k] * self.wo[j][k]            hidden_deltas[j] = dsigmoid(self.ah[j]) * error        # 更新输出层权重        for j in range(self.nh):            for k in range(self.no):                change = output_deltas[k] * self.ah[j]                self.wo[j][k] = self.wo[j][k] + N * change + M * self.co[j][k]                self.co[j][k] = change                # print(N*change, M*self.co[j][k])        # 更新输入层权重        for i in range(self.ni):            for j in range(self.nh):                change = hidden_deltas[j] * self.ai[i]                self.wi[i][j] = self.wi[i][j] + N * change + M * self.ci[i][j]                self.ci[i][j] = change        # 计算误差        error = 0.0        for k in range(len(targets)):            error = error + 0.5 * (targets[k] - self.ao[k]) ** 2        return error    def test(self, patterns):        for p in patterns:            print(p[0], '->', self.update(p[0]))    def weights(self):        print('输入层权重:')        for i in range(self.ni):            print(self.wi[i])        print()        print('输出层权重:')        for j in range(self.nh):            print(self.wo[j])    def train(self, patterns, iterations=1000, N=0.5, M=0.1):        # N: 学习速率(learning rate)        # M: 动量因子(momentum factor)        for i in range(iterations): #循环1000次,每100 次输出一个结果            print "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$"            error = 0.0            for p in patterns:# 每次输入的有四个点                # print p                inputs = p[0]                # print "imputs"                # print inputs                # print "-------"                targets = p[1]                self.update(inputs)  #更新输入的数据                error = error + self.backPropagate(targets, N, M)  #反向传播结果,把结果回带到            print "******************************************"            if i % 100 == 0:                print('误差 %-.5f' % error)def demo():    # 一个演示:教神经网络学习逻辑异或(XOR)------------可以换成你自己的数据试试    pat = [        [[0, 0], [0]],        [[0, 1], [1]],        [[1, 0], [1]],        [[1, 1], [0]]    ]    # 创建一个神经网络:输入层有两个节点、隐藏层有两个节点、输出层有一个节点    n = NN(2, 4, 1)    # 用一些模式训练它    n.train(pat)    # 测试训练的成果(不要吃惊哦)    n.test(pat)    # 看看训练好的权重(当然可以考虑把训练好的权重持久化)    n.weights()if __name__ == '__main__':    demo()


0 0
原创粉丝点击