Flume-NG启动过程源码分析(3)

来源:互联网 发布:系统自动登录软件 编辑:程序博客网 时间:2024/05/16 01:45

原文地址:http://www.myexception.cn/software-architecture-design/1692546.html

本篇分析加载配置文件后各个组件是如何运行的?

  加载完配置文件订阅者Application类会收到订阅信息执行:

  @Subscribe  public synchronized void handleConfigurationEvent(MaterializedConfiguration conf) {    stopAllComponents();    startAllComponents(conf);  }

  MaterializedConfiguration conf就是getConfiguration()方法获取的配置信息,是SimpleMaterializedConfiguration的一个实例。

  handleConfigurationEvent方法在前面章节(一)中有过大致分析,包括:stopAllComponents()和startAllComponents(conf)。Application中的materializedConfiguration就是MaterializedConfiguration conf,stopAllComponents()方法中的materializedConfiguration是旧的配置信息,需要先停掉旧的组件,然后startAllComponents(conf)将新的配置信息赋给materializedConfiguration并依次启动各个组件。

  1、先看startAllComponents(conf)方法。代码如下:

private void startAllComponents(MaterializedConfiguration materializedConfiguration) {//启动所有组件最基本的三大组件    logger.info("Starting new configuration:{}", materializedConfiguration);    this.materializedConfiguration = materializedConfiguration;    for (Entry<String, Channel> entry :      materializedConfiguration.getChannels().entrySet()) {      try{        logger.info("Starting Channel " + entry.getKey());        supervisor.supervise(entry.getValue(),            new SupervisorPolicy.AlwaysRestartPolicy(), LifecycleState.START);      } catch (Exception e){        logger.error("Error while starting {}", entry.getValue(), e);      }    }    /*     * Wait for all channels to start.等待所有channel启动完毕     */    for(Channel ch: materializedConfiguration.getChannels().values()){      while(ch.getLifecycleState() != LifecycleState.START          && !supervisor.isComponentInErrorState(ch)){        try {          logger.info("Waiting for channel: " + ch.getName() +              " to start. Sleeping for 500 ms");          Thread.sleep(500);        } catch (InterruptedException e) {          logger.error("Interrupted while waiting for channel to start.", e);          Throwables.propagate(e);        }      }    }    for (Entry<String, SinkRunner> entry : materializedConfiguration.getSinkRunners()        .entrySet()) {        //启动所有sink      try{        logger.info("Starting Sink " + entry.getKey());        supervisor.supervise(entry.getValue(),          new SupervisorPolicy.AlwaysRestartPolicy(), LifecycleState.START);      } catch (Exception e) {        logger.error("Error while starting {}", entry.getValue(), e);      }    }    for (Entry<String, SourceRunner> entry : materializedConfiguration        .getSourceRunners().entrySet()) {//启动所有source      try{        logger.info("Starting Source " + entry.getKey());        supervisor.supervise(entry.getValue(),          new SupervisorPolicy.AlwaysRestartPolicy(), LifecycleState.START);      } catch (Exception e) {        logger.error("Error while starting {}", entry.getValue(), e);      }    }    this.loadMonitoring();  }


  三大组件都是通过supervisor.supervise(entry.getValue(),new SupervisorPolicy.AlwaysRestartPolicy(), LifecycleState.START)启动的,其中,channel启动之后还要待所有的channel完全启动完毕之后才可再去启动sink和source。如果channel没有启动完毕就去启动另外俩组件,会出现错误,以为一旦sink或者source建立完毕就会立即与channel通信获取数据。稍后会分别分析sink和source的启动。

  supervisor是LifecycleSupervisor的一个对象,该类的构造方法会构造一个有10个线程,上限是20的线程池供各大组件使用。构造方法如下:

public LifecycleSupervisor() {    lifecycleState = LifecycleState.IDLE;    supervisedProcesses = new HashMap<LifecycleAware, Supervisoree>();//存储所有历史上的组件及其监控信息    monitorFutures = new HashMap<LifecycleAware, ScheduledFuture<?>>();    monitorService = new ScheduledThreadPoolExecutor(10,        new ThreadFactoryBuilder().setNameFormat(            "lifecycleSupervisor-" + Thread.currentThread().getId() + "-%d")            .build());    monitorService.setMaximumPoolSize(20);    monitorService.setKeepAliveTime(30, TimeUnit.SECONDS);    purger = new Purger();    needToPurge = false;  }

  supervise(LifecycleAware lifecycleAware,SupervisorPolicy policy, LifecycleState desiredState)方法则是具体执行启动各个组件的方法。flume的所有组件均实现自LifecycleAware 接口,如图:

这个接口就三个方法getLifecycleState(返回组件运行状态)、start(组件启动)、stop(停止组件)。supervise方法代码如下:

public synchronized void supervise(LifecycleAware lifecycleAware,      SupervisorPolicy policy, LifecycleState desiredState) {  //检查线程池状态    if(this.monitorService.isShutdown()        || this.monitorService.isTerminated()        || this.monitorService.isTerminating()){      throw new FlumeException("Supervise called on " + lifecycleAware + " " +          "after shutdown has been initiated. " + lifecycleAware + " will not" +          " be started");    }  //如果该组件已经在监控,则拒绝二次监控    Preconditions.checkState(!supervisedProcesses.containsKey(lifecycleAware),        "Refusing to supervise " + lifecycleAware + " more than once");    if (logger.isDebugEnabled()) {      logger.debug("Supervising service:{} policy:{} desiredState:{}",          new Object[] { lifecycleAware, policy, desiredState });    }  //新的组件    Supervisoree process = new Supervisoree();    process.status = new Status();    process.policy = policy;    process.status.desiredState = desiredState;    process.status.error = false;    MonitorRunnable monitorRunnable = new MonitorRunnable();    monitorRunnable.lifecycleAware = lifecycleAware;//组件    monitorRunnable.supervisoree = process;    monitorRunnable.monitorService = monitorService;    supervisedProcesses.put(lifecycleAware, process);    //创建并执行一个在给定初始延迟后首次启用的定期操作,随后,在每一次执行终止和下一次执行开始之间都存在给定的延迟。如果任务的任一执行遇到异常,就会取消后续执行。    ScheduledFuture<?> future = monitorService.scheduleWithFixedDelay(        monitorRunnable, 0, 3, TimeUnit.SECONDS);  //启动MonitorRunnable,结束之后3秒再重新启动,可以用于重试    monitorFutures.put(lifecycleAware, future);  }

  该方法首先monitorService是否是正常运行状态;然后构造Supervisoree process = new Supervisoree(),进行赋值并构造一个监控进程MonitorRunnable,放入线程池去执行。

  MonitorRunnable.run()方法:

public void run() {      logger.debug("checking process:{} supervisoree:{}", lifecycleAware,          supervisoree);      long now = System.currentTimeMillis();//获取现在的时间戳      try {        if (supervisoree.status.firstSeen == null) {          logger.debug("first time seeing {}", lifecycleAware);      //如果这个组件是是初次受监控          supervisoree.status.firstSeen = now;        }     //如果这个组件已经监控过        supervisoree.status.lastSeen = now;        synchronized (lifecycleAware) {//锁住组件          if (supervisoree.status.discard) {//该组件已经停止监控            // Unsupervise has already been called on this.            logger.info("Component has already been stopped {}", lifecycleAware);            return;//直接返回          } else if (supervisoree.status.error) {//该组件是错误状态            logger.info("Component {} is in error state, and Flume will not"                + "attempt to change its state", lifecycleAware);            return;//直接返回          }          supervisoree.status.lastSeenState = lifecycleAware.getLifecycleState();//获取组件最新状态,没运行start()方法之前是LifecycleState.IDLE状态          if (!lifecycleAware.getLifecycleState().equals(              supervisoree.status.desiredState)) {//该组件最新状态和期望的状态不一致            logger.debug("Want to transition {} from {} to {} (failures:{})",                new Object[] { lifecycleAware, supervisoree.status.lastSeenState,                    supervisoree.status.desiredState,                    supervisoree.status.failures });            switch (supervisoree.status.desiredState) {//根据状态执行相应的操作              case START:                try {                  lifecycleAware.start();   //启动组件,同时其状态也会变为LifecycleState.START                } catch (Throwable e) {                  logger.error("Unable to start " + lifecycleAware                      + " - Exception follows.", e);                  if (e instanceof Error) {                    // This component can never recover, shut it down.                    supervisoree.status.desiredState = LifecycleState.STOP;                    try {                      lifecycleAware.stop();                      logger.warn("Component {} stopped, since it could not be"                          + "successfully started due to missing dependencies",                          lifecycleAware);                    } catch (Throwable e1) {                      logger.error("Unsuccessful attempt to "                          + "shutdown component: {} due to missing dependencies."                          + " Please shutdown the agent"                          + "or disable this component, or the agent will be"                          + "in an undefined state.", e1);                      supervisoree.status.error = true;                      if (e1 instanceof Error) {                        throw (Error) e1;                      }                      // Set the state to stop, so that the conf poller can                      // proceed.                    }                  }                  supervisoree.status.failures++;//启动错误失败次数+1                }                break;              case STOP:                try {                  lifecycleAware.stop();    //停止组件                } catch (Throwable e) {                  logger.error("Unable to stop " + lifecycleAware                      + " - Exception follows.", e);                  if (e instanceof Error) {                    throw (Error) e;                  }                  supervisoree.status.failures++;  //组件停止错误,错误次数+1                }                break;              default:                logger.warn("I refuse to acknowledge {} as a desired state",                    supervisoree.status.desiredState);            }       //两种SupervisorPolicy(AlwaysRestartPolicy和OnceOnlyPolicy)后者还未使用过,前者表示可以重新启动的组件,后者表示只能运行一次的组件            if (!supervisoree.policy.isValid(lifecycleAware, supervisoree.status)) {              logger.error(                  "Policy {} of {} has been violated - supervisor should exit!",                  supervisoree.policy, lifecycleAware);            }          }        }      } catch(Throwable t) {        logger.error("Unexpected error", t);      }      logger.debug("Status check complete");    }

   上面的 lifecycleAware.stop()和lifecycleAware.start()就是执行的sink、source、channel等的对应方法。

  这里的start需要注意如果是channel则是直接执行start方法;如果是sink或者PollableSource的实现类,则会在start()方法中启动一个线程来循环的调用process()方法来从channel拿数据(sink)或者向channel送数据(source);如果是EventDrivenSource的实现类,则没有process()方法,通过执行start()来执行想channel中送数据的操作(可以在此添加线程来实现相应的逻辑)。

  2、stopAllComponents()方法。顾名思义,就是停止所有组件的方法。该方法代码如下:

private void stopAllComponents() {    if (this.materializedConfiguration != null) {      logger.info("Shutting down configuration: {}", this.materializedConfiguration);      for (Entry<String, SourceRunner> entry : this.materializedConfiguration          .getSourceRunners().entrySet()) {        try{          logger.info("Stopping Source " + entry.getKey());          supervisor.unsupervise(entry.getValue());        } catch (Exception e){          logger.error("Error while stopping {}", entry.getValue(), e);        }      }      for (Entry<String, SinkRunner> entry :        this.materializedConfiguration.getSinkRunners().entrySet()) {        try{          logger.info("Stopping Sink " + entry.getKey());          supervisor.unsupervise(entry.getValue());        } catch (Exception e){          logger.error("Error while stopping {}", entry.getValue(), e);        }      }      for (Entry<String, Channel> entry :        this.materializedConfiguration.getChannels().entrySet()) {        try{          logger.info("Stopping Channel " + entry.getKey());          supervisor.unsupervise(entry.getValue());        } catch (Exception e){          logger.error("Error while stopping {}", entry.getValue(), e);        }      }    }    if(monitorServer != null) {      monitorServer.stop();    }  }


  首先,需要注意的是,stopAllComponents()放在startAllComponents(MaterializedConfiguration materializedConfiguration)方法之前的原因,由于配置文件的动态加载这一特性的存在,使得每次加载之前都要先把旧的组件停掉,然后才能去加载最新配置文件中的配置;

  其次,首次执行stopAllComponents()时,由于配置文件尚未赋值,所以并不会执行停止所有组件的操作以及停止monitorServer。再次加载时会依照顺序依次停止对source、sink以及channel的监控,通过supervisor.unsupervise(entry.getValue())停止对其的监控,然后停止monitorServer。supervisor.unsupervise方法如下:

public synchronized void unsupervise(LifecycleAware lifecycleAware) {    Preconditions.checkState(supervisedProcesses.containsKey(lifecycleAware),        "Unaware of " + lifecycleAware + " - can not unsupervise");    logger.debug("Unsupervising service:{}", lifecycleAware);    synchronized (lifecycleAware) {    Supervisoree supervisoree = supervisedProcesses.get(lifecycleAware);    supervisoree.status.discard = true;      this.setDesiredState(lifecycleAware, LifecycleState.STOP);      logger.info("Stopping component: {}", lifecycleAware);      lifecycleAware.stop();    }    supervisedProcesses.remove(lifecycleAware);    //We need to do this because a reconfiguration simply unsupervises old    //components and supervises new ones.    monitorFutures.get(lifecycleAware).cancel(false);    //purges are expensive, so it is done only once every 2 hours.    needToPurge = true;    monitorFutures.remove(lifecycleAware);  }


  该方法首先会检查正在运行的组件当中是否有此组件supervisedProcesses.containsKey(lifecycleAware);如果存在,则对此组件标记为已取消监控supervisoree.status.discard = true;将状态设置为STOP,并停止组件lifecycleAware.stop();然后从删除此组件的监控记录,包括从记录正在处于监控的组件的结构supervisedProcesses以及记录组件及其对应的运行线程的结构monitorFutures中删除相应的组件信息,并且needToPurge = true会使得两小时执行一次的线程池清理操作。

  有一个问题就是,sink和source是如何找到对应的channel的呢??其实前面章节就已经讲解过,分别在AbstractConfigurationProvider.loadSources方法中通过ChannelSelector配置source对应的channel,而在source中通过getChannelProcessor()获取channels,通过channelProcessor.processEventBatch(eventList)将events发送到channel中;而在AbstractConfigurationProvider.loadSinks方法中sink.setChannel(channelComponent.channel)来设置此sink对应的channel,然后在sink的实现类中通过getChannel()获取设置的channel,并使用channel.take()从channel中获取event进行处理。

  

  以上三节是Flume-NG的启动、配置文件的加载、配置文件的动态加载、组件的执行的整个流程。文中的疏漏之处,请各位指教,我依然会后续继续完善这些内容的。


0 0