深入了解java中的hashMap

来源:互联网 发布:明朝军事知乎 编辑:程序博客网 时间:2024/06/06 14:22

第1部分 HashMap介绍

HashMap简介

HashMap 是一个散列表,它存储的内容是键值对(key-value)映射。
HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。
HashMap 的实现不是同步的,这意味着它不是线程安全的(Hashtable跟HashMap很像,唯一的区别是Hashtalbe中的方法是线程安全的,也就是同步的)。它的key、value都可以为null。此外,HashMap中的映射不是有序的。还有需要注意的一点是此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”。容量 是哈希表中桶的数量,初始容量 只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。

通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。

HashMap的继承关系

HashMap的数据结构:

在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表的数组”的数据结构,每个元素存放链表头结点的数组,即数组和链表的结合体。

从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。源码如下:
/** * The table, resized as necessary. Length MUST Always be a power of two. */transient Entry[] table;static class Entry<K,V> implements Map.Entry<K,V> {    final K key;    V value;    Entry<K,V> next;    final int hash;    ……}

可以看出,Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。
HashMap的构造函数

HashMap共有4个构造函数,如下:
// 默认构造函数。HashMap()// 指定“容量大小”的构造函数HashMap(int capacity)// 指定“容量大小”和“加载因子”的构造函数HashMap(int capacity, float loadFactor)// 包含“子Map”的构造函数HashMap(Map<? extends K, ? extends V> map)

HashMap的API

 void clear() //从此映射中移除所有映射关系。 Object clone() //返回此 HashMap 实例的浅表副本:并不复制键和值本身。 boolean containsKey(Object key) //如果此映射包含对于指定键的映射关系,则返回 true。 boolean containsValue(Object value) //如果此映射将一个或多个键映射到指定值,则返回 true。 Set<Map.Entry<K,V>> entrySet() //返回此映射所包含的映射关系的 Set 视图。 V get(Object key) //返回指定键所映射的值;如果对于该键来说,此映射不包含任何映射关系,则返回 null。 boolean isEmpty() //如果此映射不包含键-值映射关系,则返回 true。 Set<K> keySet() //返回此映射中所包含的键的 Set 视图。 V put(K key, V value) //在此映射中关联指定值与指定键。 void putAll(Map<? extends K,? extends V> m) //将指定映射的所有映射关系复制到此映射中,这些映射关系将替换此映射目前针对指定映射中所有键的所有映射关系。 V remove(Object key) //从此映射中移除指定键的映射关系(如果存在)。 int size() //返回此映射中的键-值映射关系数。 Collection<V> values() //返回此映射所包含的值的 Collection 视图。

第2部分 HashMap源码

HashMap的存储

public V put(K key, V value) {    // HashMap允许存放null键和null值。    // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。    if (key == null)        return putForNullKey(value);    // 根据key的hashCode重新计算hash值。    int hash = hash(key.hashCode());    // 搜索指定hash值所对应table中的索引。    int i = indexFor(hash, table.length);    // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。    for (Entry<K,V> e = table[i]; e != null; e = e.next) {        Object k;        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {            V oldValue = e.value;            e.value = value;            e.recordAccess(this);            return oldValue;        }    }    // 如果i索引处的Entry为null,表明此处还没有Entry。    // modCount记录HashMap中修改结构的次数    modCount++;    // 将key、value添加到i索引处。    addEntry(hash, key, value, i);    return null;}

  从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。

  addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的 i 索引处。addEntry 是HashMap 提供的一个包访问权限的方法(就是没有public,protected,private这三个访问权限修饰词修饰,为默认的访问权限,用default表示,但在代码中没有这个default),代码如下:

void addEntry(int hash, K key, V value, int bucketIndex) {    // 获取指定 bucketIndex 索引处的 Entry     Entry<K,V> e = table[bucketIndex];    // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);    // 如果 Map 中的 key-value 对的数量超过了极限    if (size++ >= threshold)    // 把 table 对象的长度扩充到原来的2倍。        resize(2 * table.length);}

 当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。

  hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。

static int hash(int h) {    h ^= (h >>> 20) ^ (h >>> 12);    return h ^ (h >>> 7) ^ (h >>> 4);}

  我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

  对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

static int indexFor(int h, int length) {    return h & (length-1);}
  这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 次方,这是HashMap在速度上的优化。在 HashMap 构造器中有如下代码:
int capacity = 1;    while (capacity < initialCapacity)        capacity <<= 1;

  这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。

  当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

  这看上去很简单,其实比较有玄机的,我们举个例子来说明:

  假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:

  h & (table.length-1)                              hash                             table.length-1       8 & (15-1):                                 0100                   &              1110                   =                0100       9 & (15-1):                                 0101                   &              1110                   =                0100      -----------------------------------------------------------------------------------------------------------------------       8 & (16-1):                                 0100                   &              1111                   =                0100       9 & (16-1):                                 0101                   &              1111                   =                0101      -----------------------------------------------------------------------------------------------------------------------

从上面的例子中可以看出:当8、9两个数和(15-1)2=(1110)进行“与运算&”的时候,产生了相同的结果,都为0100,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与(15-1)2=(1110)进行“与运算&”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!

  而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1(比如(24-1)2=1111),这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表

  所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

  根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部。

Entry是个单向列表,源码如下

// Entry是单向链表。    // 它是 “HashMap链式存储法”对应的链表。    // 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数    static class Entry<K,V> implements Map.Entry<K,V> {        final K key;        V value;        // 指向下一个节点        Entry<K,V> next;        final int hash;        // 构造函数。        // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"        Entry(int h, K k, V v, Entry<K,V> n) {            value = v;            next = n;            key = k;            hash = h;        }

知道了存储的理念,就能很好的应用hashMap进行存储。从HashMap中取值的时候取任何值速度是相等的。HashMap冲突是因为两个不同的key值hashcode之后产生的hash值相等会产生冲突等等。
但是产生冲突如何解决,这又涉及到数据结构里的冲突的解决方案,有很多种,等以后有时间再说吧!




参考:http://zhangshixi.iteye.com/blog/672697






0 0
原创粉丝点击