rtmp complex handshake code

来源:互联网 发布:知乎取代百度知道 编辑:程序博客网 时间:2024/06/03 23:44
/*The MIT License (MIT)Copyright (c) 2013-2014 winlinPermission is hereby granted, free of charge, to any person obtaining a copy ofthis software and associated documentation files (the "Software"), to deal inthe Software without restriction, including without limitation the rights touse, copy, modify, merge, publish, distribute, sublicense, and/or sell copies ofthe Software, and to permit persons to whom the Software is furnished to do so,subject to the following conditions:The above copyright notice and this permission notice shall be included in allcopies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESSFOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS ORCOPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHERIN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR INCONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.*/#ifndef SRS_RTMP_PROTOCOL_HANDSHKAE_HPP#define SRS_RTMP_PROTOCOL_HANDSHKAE_HPP/*#include <srs_protocol_handshake.hpp>*/#include <srs_core.hpp>class ISrsProtocolReaderWriter;class SrsComplexHandshake;class SrsHandshakeBytes;class SrsStream;#ifdef SRS_AUTO_SSL// for openssl.#include <openssl/hmac.h>namespace _srs_internal{    // the digest key generate size.    #define __SRS_OpensslHashSize 512    extern u_int8_t SrsGenuineFMSKey[];    extern u_int8_t SrsGenuineFPKey[];    int openssl_HMACsha256(const void* key, int key_size, const void* data, int data_size, void* digest);    int openssl_generate_key(char* public_key, int32_t size);        /**    * the DH wrapper.    */    class SrsDH    {    private:        DH* pdh;    public:        SrsDH();        virtual ~SrsDH();    public:        /**        * initialize dh, generate the public and private key.        * @param ensure_128bytes_public_key whether ensure public key is 128bytes,        *       sometimes openssl generate 127bytes public key.        *       default to false to donot ensure.        */        virtual int initialize(bool ensure_128bytes_public_key = false);        /**        * copy the public key.        * @param pkey the bytes to copy the public key.        * @param pkey_size the max public key size, output the actual public key size.        *       user should never ignore this size.        * @remark, when ensure_128bytes_public_key, the size always 128.        */        virtual int copy_public_key(char* pkey, int32_t& pkey_size);        /**        * generate and copy the shared key.        * generate the shared key with peer public key.        * @param ppkey peer public key.        * @param ppkey_size the size of ppkey.        * @param skey the computed shared key.        * @param skey_size the max shared key size, output the actual shared key size.        *       user should never ignore this size.        */        virtual int copy_shared_key(const char* ppkey, int32_t ppkey_size, char* skey, int32_t& skey_size);    private:        virtual int do_initialize();    };    /**    * the schema type.    */    enum srs_schema_type     {        srs_schema_invalid = 2,                /**        * key-digest sequence        */        srs_schema0 = 0,                /**        * digest-key sequence        * @remark, FMS requires the schema1(digest-key), or connect failed.        */        //         srs_schema1 = 1,    };        /**    * 764bytes key structure    *     random-data: (offset)bytes    *     key-data: 128bytes    *     random-data: (764-offset-128-4)bytes    *     offset: 4bytes    * @see also: http://blog.csdn.net/win_lin/article/details/13006803    */    class key_block    {    public:        // (offset)bytes        char* random0;        int random0_size;                // 128bytes        char key[128];                // (764-offset-128-4)bytes        char* random1;        int random1_size;                // 4bytes        int32_t offset;    public:        key_block();        virtual ~key_block();    public:        // parse key block from c1s1.        // if created, user must free it by srs_key_block_free        // @stream contains c1s1_key_bytes the key start bytes        int parse(SrsStream* stream);    private:        // calc the offset of key,        // the key->offset cannot be used as the offset of key.        int calc_valid_offset();    };        /**    * 764bytes digest structure    *     offset: 4bytes    *     random-data: (offset)bytes    *     digest-data: 32bytes    *     random-data: (764-4-offset-32)bytes    * @see also: http://blog.csdn.net/win_lin/article/details/13006803    */    class digest_block    {    public:        // 4bytes        int32_t offset;                // (offset)bytes        char* random0;        int random0_size;                // 32bytes        char digest[32];                // (764-4-offset-32)bytes        char* random1;        int random1_size;    public:        digest_block();        virtual ~digest_block();    public:        // parse digest block from c1s1.        // if created, user must free it by srs_digest_block_free        // @stream contains c1s1_digest_bytes the digest start bytes        int parse(SrsStream* stream);    private:        // calc the offset of digest,        // the key->offset cannot be used as the offset of digest.        int calc_valid_offset();    };        class c1s1;        /**    * the c1s1 strategy, use schema0 or schema1.    * the template method class to defines common behaviors,    * while the concrete class to implements in schema0 or schema1.    */    class c1s1_strategy    {    protected:        key_block key;        digest_block digest;    public:        c1s1_strategy();        virtual ~c1s1_strategy();    public:        /**        * get the scema.        */        virtual srs_schema_type schema() = 0;        /**        * get the digest.        */        virtual char* get_digest();        /**        * get the key.        */        virtual char* get_key();        /**        * copy to bytes.        * @param size must be 1536.        */        virtual int dump(c1s1* owner, char* _c1s1, int size);        /**        * server: parse the c1s1, discovery the key and digest by schema.        * use the c1_validate_digest() to valid the digest of c1.        */        virtual int parse(char* _c1s1, int size) = 0;    public:        /**        * client: create and sign c1 by schema.        * sign the c1, generate the digest.        *         calc_c1_digest(c1, schema) {        *            get c1s1-joined from c1 by specified schema        *            digest-data = HMACsha256(c1s1-joined, FPKey, 30)        *            return digest-data;        *        }        *        random fill 1536bytes c1 // also fill the c1-128bytes-key        *        time = time() // c1[0-3]        *        version = [0x80, 0x00, 0x07, 0x02] // c1[4-7]        *        schema = choose schema0 or schema1        *        digest-data = calc_c1_digest(c1, schema)        *        copy digest-data to c1        */        virtual int c1_create(c1s1* owner);        /**        * server: validate the parsed c1 schema        */        virtual int c1_validate_digest(c1s1* owner, bool& is_valid);        /**        * server: create and sign the s1 from c1.        *       // decode c1 try schema0 then schema1        *       c1-digest-data = get-c1-digest-data(schema0)        *       if c1-digest-data equals to calc_c1_digest(c1, schema0) {          *           c1-key-data = get-c1-key-data(schema0)          *           schema = schema0        *       } else {          *           c1-digest-data = get-c1-digest-data(schema1)          *           if c1-digest-data not equals to calc_c1_digest(c1, schema1) {        *               switch to simple handshake.          *               return          *           }        *           c1-key-data = get-c1-key-data(schema1)          *           schema = schema1        *       }        *         *       // generate s1        *       random fill 1536bytes s1        *       time = time() // c1[0-3]        *       version = [0x04, 0x05, 0x00, 0x01] // s1[4-7]        *       s1-key-data=shared_key=DH_compute_key(peer_pub_key=c1-key-data)        *       get c1s1-joined by specified schema        *       s1-digest-data = HMACsha256(c1s1-joined, FMSKey, 36)        *       copy s1-digest-data and s1-key-data to s1.        * @param c1, to get the peer_pub_key of client.        */        virtual int s1_create(c1s1* owner, c1s1* c1);        /**        * server: validate the parsed s1 schema        */        virtual int s1_validate_digest(c1s1* owner, bool& is_valid);    public:        /**        * calc the digest for c1        */        virtual int calc_c1_digest(c1s1* owner, char*& c1_digest);        /**        * calc the digest for s1        */        virtual int calc_s1_digest(c1s1* owner, char*& s1_digest);        /**        * copy whole c1s1 to bytes.        * @param size must always be 1536 with digest, and 1504 without digest.        */        virtual int copy_to(c1s1* owner, char* bytes, int size, bool with_digest) = 0;        /**        * copy time and version to stream.        */        virtual void copy_time_version(SrsStream* stream, c1s1* owner);        /**        * copy key to stream.        */        virtual void copy_key(SrsStream* stream);        /**        * copy digest to stream.        */        virtual void copy_digest(SrsStream* stream, bool with_digest);    };        /**    * c1s1 schema0    *     key: 764bytes    *     digest: 764bytes    */    class c1s1_strategy_schema0 : public c1s1_strategy    {    public:        c1s1_strategy_schema0();        virtual ~c1s1_strategy_schema0();    public:        virtual srs_schema_type schema();        virtual int parse(char* _c1s1, int size);    public:        virtual int copy_to(c1s1* owner, char* bytes, int size, bool with_digest);    };        /**    * c1s1 schema1    *     digest: 764bytes    *     key: 764bytes    */    class c1s1_strategy_schema1 : public c1s1_strategy    {    public:        c1s1_strategy_schema1();        virtual ~c1s1_strategy_schema1();    public:        virtual srs_schema_type schema();        virtual int parse(char* _c1s1, int size);    public:        virtual int copy_to(c1s1* owner, char* bytes, int size, bool with_digest);    };    /**    * c1s1 schema0    *     time: 4bytes    *     version: 4bytes    *     key: 764bytes    *     digest: 764bytes    * c1s1 schema1    *     time: 4bytes    *     version: 4bytes    *     digest: 764bytes    *     key: 764bytes    * @see also: http://blog.csdn.net/win_lin/article/details/13006803    */    class c1s1    {    public:        // 4bytes        int32_t time;        // 4bytes        int32_t version;        // 764bytes+764bytes        c1s1_strategy* payload;    public:        c1s1();        virtual ~c1s1();    public:        /**        * get the scema.        */        virtual srs_schema_type schema();        /**        * get the digest key.        */        virtual char* get_digest();        /**        * get the key.        */        virtual char* get_key();    public:        /**        * copy to bytes.        * @param size, must always be 1536.        */        virtual int dump(char* _c1s1, int size);        /**        * server: parse the c1s1, discovery the key and digest by schema.        * @param size, must always be 1536.        * use the c1_validate_digest() to valid the digest of c1.        * use the s1_validate_digest() to valid the digest of s1.        */        virtual int parse(char* _c1s1, int size, srs_schema_type _schema);    public:        /**        * client: create and sign c1 by schema.        * sign the c1, generate the digest.        *         calc_c1_digest(c1, schema) {        *            get c1s1-joined from c1 by specified schema        *            digest-data = HMACsha256(c1s1-joined, FPKey, 30)        *            return digest-data;        *        }        *        random fill 1536bytes c1 // also fill the c1-128bytes-key        *        time = time() // c1[0-3]        *        version = [0x80, 0x00, 0x07, 0x02] // c1[4-7]        *        schema = choose schema0 or schema1        *        digest-data = calc_c1_digest(c1, schema)        *        copy digest-data to c1        */        virtual int c1_create(srs_schema_type _schema);        /**        * server: validate the parsed c1 schema        */        virtual int c1_validate_digest(bool& is_valid);    public:        /**        * server: create and sign the s1 from c1.        *       // decode c1 try schema0 then schema1        *       c1-digest-data = get-c1-digest-data(schema0)        *       if c1-digest-data equals to calc_c1_digest(c1, schema0) {          *           c1-key-data = get-c1-key-data(schema0)          *           schema = schema0        *       } else {          *           c1-digest-data = get-c1-digest-data(schema1)          *           if c1-digest-data not equals to calc_c1_digest(c1, schema1) {        *               switch to simple handshake.          *               return          *           }        *           c1-key-data = get-c1-key-data(schema1)          *           schema = schema1        *       }        *         *       // generate s1        *       random fill 1536bytes s1        *       time = time() // c1[0-3]        *       version = [0x04, 0x05, 0x00, 0x01] // s1[4-7]        *       s1-key-data=shared_key=DH_compute_key(peer_pub_key=c1-key-data)        *       get c1s1-joined by specified schema        *       s1-digest-data = HMACsha256(c1s1-joined, FMSKey, 36)        *       copy s1-digest-data and s1-key-data to s1.        */        virtual int s1_create(c1s1* c1);        /**        * server: validate the parsed s1 schema        */        virtual int s1_validate_digest(bool& is_valid);    };        /**    * the c2s2 complex handshake structure.    * random-data: 1504bytes    * digest-data: 32bytes    * @see also: http://blog.csdn.net/win_lin/article/details/13006803    */    class c2s2    {    public:        char random[1504];        char digest[32];    public:        c2s2();        virtual ~c2s2();    public:        /**        * copy to bytes.        * @param size, must always be 1536.        */        virtual int dump(char* _c2s2, int size);        /**        * parse the c2s2        * @param size, must always be 1536.        */        virtual int parse(char* _c2s2, int size);    public:        /**        * create c2.        * random fill c2s2 1536 bytes        *         * // client generate C2, or server valid C2        * temp-key = HMACsha256(s1-digest, FPKey, 62)        * c2-digest-data = HMACsha256(c2-random-data, temp-key, 32)        */        virtual int c2_create(c1s1* s1);                /**        * validate the c2 from client.        */        virtual int c2_validate(c1s1* s1, bool& is_valid);    public:        /**        * create s2.        * random fill c2s2 1536 bytes        *         * // server generate S2, or client valid S2        * temp-key = HMACsha256(c1-digest, FMSKey, 68)        * s2-digest-data = HMACsha256(s2-random-data, temp-key, 32)        */        virtual int s2_create(c1s1* c1);                /**        * validate the s2 from server.        */        virtual int s2_validate(c1s1* c1, bool& is_valid);    };}#endif/*** simple handshake.* user can try complex handshake first, * rollback to simple handshake if error ERROR_RTMP_TRY_SIMPLE_HS*/class SrsSimpleHandshake{public:    SrsSimpleHandshake();    virtual ~SrsSimpleHandshake();public:    /**    * simple handshake.    */    virtual int handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io);    virtual int handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io);};/*** rtmp complex handshake,* @see also crtmp(crtmpserver) or librtmp,* @see also: http://blog.csdn.net/win_lin/article/details/13006803*/class SrsComplexHandshake{public:    SrsComplexHandshake();    virtual ~SrsComplexHandshake();public:    /**    * complex hanshake.    * @return user must:    *     continue connect app if success,    *     try simple handshake if error is ERROR_RTMP_TRY_SIMPLE_HS,    *     otherwise, disconnect    */    virtual int handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io);    virtual int handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io);};#endif/*The MIT License (MIT)Copyright (c) 2013-2014 winlinPermission is hereby granted, free of charge, to any person obtaining a copy ofthis software and associated documentation files (the "Software"), to deal inthe Software without restriction, including without limitation the rights touse, copy, modify, merge, publish, distribute, sublicense, and/or sell copies ofthe Software, and to permit persons to whom the Software is furnished to do so,subject to the following conditions:The above copyright notice and this permission notice shall be included in allcopies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESSFOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS ORCOPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHERIN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR INCONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.*/#include <srs_protocol_handshake.hpp>#include <time.h>#include <srs_core_autofree.hpp>#include <srs_kernel_error.hpp>#include <srs_kernel_log.hpp>#include <srs_protocol_io.hpp>#include <srs_protocol_utility.hpp>#include <srs_protocol_rtmp.hpp>#include <srs_kernel_stream.hpp>#ifdef SRS_AUTO_SSLusing namespace _srs_internal;// for openssl_HMACsha256#include <openssl/evp.h>#include <openssl/hmac.h>// for __openssl_generate_key#include <openssl/dh.h>namespace _srs_internal{    // 68bytes FMS key which is used to sign the sever packet.    u_int8_t SrsGenuineFMSKey[] = {        0x47, 0x65, 0x6e, 0x75, 0x69, 0x6e, 0x65, 0x20,        0x41, 0x64, 0x6f, 0x62, 0x65, 0x20, 0x46, 0x6c,        0x61, 0x73, 0x68, 0x20, 0x4d, 0x65, 0x64, 0x69,        0x61, 0x20, 0x53, 0x65, 0x72, 0x76, 0x65, 0x72,        0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Media Server 001        0xf0, 0xee, 0xc2, 0x4a, 0x80, 0x68, 0xbe, 0xe8,        0x2e, 0x00, 0xd0, 0xd1, 0x02, 0x9e, 0x7e, 0x57,        0x6e, 0xec, 0x5d, 0x2d, 0x29, 0x80, 0x6f, 0xab,        0x93, 0xb8, 0xe6, 0x36, 0xcf, 0xeb, 0x31, 0xae    }; // 68        // 62bytes FP key which is used to sign the client packet.    u_int8_t SrsGenuineFPKey[] = {        0x47, 0x65, 0x6E, 0x75, 0x69, 0x6E, 0x65, 0x20,        0x41, 0x64, 0x6F, 0x62, 0x65, 0x20, 0x46, 0x6C,        0x61, 0x73, 0x68, 0x20, 0x50, 0x6C, 0x61, 0x79,        0x65, 0x72, 0x20, 0x30, 0x30, 0x31, // Genuine Adobe Flash Player 001        0xF0, 0xEE, 0xC2, 0x4A, 0x80, 0x68, 0xBE, 0xE8,        0x2E, 0x00, 0xD0, 0xD1, 0x02, 0x9E, 0x7E, 0x57,        0x6E, 0xEC, 0x5D, 0x2D, 0x29, 0x80, 0x6F, 0xAB,        0x93, 0xB8, 0xE6, 0x36, 0xCF, 0xEB, 0x31, 0xAE    }; // 62        int __openssl_HMACsha256(HMAC_CTX* ctx, const void* data, int data_size, void* digest, unsigned int* digest_size)     {        int ret = ERROR_SUCCESS;                if (HMAC_Update(ctx, (unsigned char *) data, data_size) < 0) {            ret = ERROR_OpenSslSha256Update;            return ret;        }            if (HMAC_Final(ctx, (unsigned char *) digest, digest_size) < 0) {            ret = ERROR_OpenSslSha256Final;            return ret;        }                return ret;    }    /**    * sha256 digest algorithm.    * @param key the sha256 key, NULL to use EVP_Digest, for instance,    *       hashlib.sha256(data).digest().    */    int openssl_HMACsha256(const void* key, int key_size, const void* data, int data_size, void* digest)     {        int ret = ERROR_SUCCESS;                unsigned int digest_size = 0;                unsigned char* __key = (unsigned char*)key;        unsigned char* __digest = (unsigned char*)digest;                if (key == NULL) {            // use data to digest.            // @see ./crypto/sha/sha256t.c            // @see ./crypto/evp/digest.c            if (EVP_Digest(data, data_size, __digest, &digest_size, EVP_sha256(), NULL) < 0)            {                ret = ERROR_OpenSslSha256EvpDigest;                return ret;            }        } else {            // use key-data to digest.            HMAC_CTX ctx;                        // @remark, if no key, use EVP_Digest to digest,            // for instance, in python, hashlib.sha256(data).digest().            HMAC_CTX_init(&ctx);                        if (HMAC_Init_ex(&ctx, __key, key_size, EVP_sha256(), NULL) < 0) {                ret = ERROR_OpenSslSha256Init;                return ret;            }                        ret = __openssl_HMACsha256(&ctx, data, data_size, __digest, &digest_size);            HMAC_CTX_cleanup(&ctx);                        if (ret != ERROR_SUCCESS) {                return ret;            }        }                if (digest_size != 32) {            ret = ERROR_OpenSslSha256DigestSize;            return ret;        }                return ret;    }        #define RFC2409_PRIME_1024 \            "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \            "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \            "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \            "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \            "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \            "FFFFFFFFFFFFFFFF"        SrsDH::SrsDH()    {        pdh = NULL;    }        SrsDH::~SrsDH()    {        if (pdh != NULL) {            if (pdh->p != NULL) {                BN_free(pdh->p);                pdh->p = NULL;            }            if (pdh->g != NULL) {                BN_free(pdh->g);                pdh->g = NULL;            }            DH_free(pdh);            pdh = NULL;        }    }        int SrsDH::initialize(bool ensure_128bytes_public_key)    {        int ret = ERROR_SUCCESS;                for (;;) {            if ((ret = do_initialize()) != ERROR_SUCCESS) {                return ret;            }                        if (ensure_128bytes_public_key) {                int32_t key_size = BN_num_bytes(pdh->pub_key);                if (key_size != 128) {                    srs_warn("regenerate 128B key, current=%dB", key_size);                    continue;                }            }                        break;        }                return ret;    }        int SrsDH::copy_public_key(char* pkey, int32_t& pkey_size)    {        int ret = ERROR_SUCCESS;                // copy public key to bytes.        // sometimes, the key_size is 127, seems ok.        int32_t key_size = BN_num_bytes(pdh->pub_key);        srs_assert(key_size > 0);                // maybe the key_size is 127, but dh will write all 128bytes pkey,        // so, donot need to set/initialize the pkey.        // @see https://github.com/winlinvip/simple-rtmp-server/issues/165        key_size = BN_bn2bin(pdh->pub_key, (unsigned char*)pkey);        srs_assert(key_size > 0);                // output the size of public key.        // @see https://github.com/winlinvip/simple-rtmp-server/issues/165        srs_assert(key_size <= pkey_size);        pkey_size = key_size;                return ret;    }        int SrsDH::copy_shared_key(const char* ppkey, int32_t ppkey_size, char* skey, int32_t& skey_size)    {        int ret = ERROR_SUCCESS;                BIGNUM* ppk = NULL;        if ((ppk = BN_bin2bn((const unsigned char*)ppkey, ppkey_size, 0)) == NULL) {            ret = ERROR_OpenSslGetPeerPublicKey;            return ret;        }                // if failed, donot return, do cleanup, @see ./test/dhtest.c:168        // maybe the key_size is 127, but dh will write all 128bytes skey,        // so, donot need to set/initialize the skey.        // @see https://github.com/winlinvip/simple-rtmp-server/issues/165        int32_t key_size = DH_compute_key((unsigned char*)skey, ppk, pdh);                if (key_size < ppkey_size) {            srs_warn("shared key size=%d, ppk_size=%d", key_size, ppkey_size);        }                if (key_size < 0 || key_size > skey_size) {            ret = ERROR_OpenSslComputeSharedKey;        } else {            skey_size = key_size;        }                if (ppk) {            BN_free(ppk);        }                return ret;    }        int SrsDH::do_initialize()    {        int ret = ERROR_SUCCESS;                int32_t bits_count = 1024;                 //1. Create the DH        if ((pdh = DH_new()) == NULL) {            ret = ERROR_OpenSslCreateDH;             return ret;        }            //2. Create his internal p and g        if ((pdh->p = BN_new()) == NULL) {            ret = ERROR_OpenSslCreateP;             return ret;        }        if ((pdh->g = BN_new()) == NULL) {            ret = ERROR_OpenSslCreateG;             return ret;        }            //3. initialize p and g, @see ./test/ectest.c:260        if (!BN_hex2bn(&pdh->p, RFC2409_PRIME_1024)) {            ret = ERROR_OpenSslParseP1024;             return ret;        }        // @see ./test/bntest.c:1764        if (!BN_set_word(pdh->g, 2)) {            ret = ERROR_OpenSslSetG;            return ret;        }            // 4. Set the key length        pdh->length = bits_count;            // 5. Generate private and public key        // @see ./test/dhtest.c:152        if (!DH_generate_key(pdh)) {            ret = ERROR_OpenSslGenerateDHKeys;            return ret;        }                return ret;    }        key_block::key_block()    {        offset = (int32_t)rand();        random0 = NULL;        random1 = NULL;                int valid_offset = calc_valid_offset();        srs_assert(valid_offset >= 0);                random0_size = valid_offset;        if (random0_size > 0) {            random0 = new char[random0_size];            srs_random_generate(random0, random0_size);            snprintf(random0, random0_size, "%s", RTMP_SIG_SRS_HANDSHAKE);        }                srs_random_generate(key, sizeof(key));                random1_size = 764 - valid_offset - 128 - 4;        if (random1_size > 0) {            random1 = new char[random1_size];            srs_random_generate(random1, random1_size);            snprintf(random1, random1_size, "%s", RTMP_SIG_SRS_HANDSHAKE);        }    }        key_block::~key_block()    {        srs_freep(random0);        srs_freep(random1);    }        int key_block::parse(SrsStream* stream)    {        int ret = ERROR_SUCCESS;                // the key must be 764 bytes.        srs_assert(stream->require(764));            // read the last offset first, 760-763        stream->skip(764 - sizeof(int32_t));        offset = stream->read_4bytes();                // reset stream to read others.        stream->skip(-764);                int valid_offset = calc_valid_offset();        srs_assert(valid_offset >= 0);                random0_size = valid_offset;        if (random0_size > 0) {            srs_freep(random0);            random0 = new char[random0_size];            stream->read_bytes(random0, random0_size);        }                stream->read_bytes(key, 128);                random1_size = 764 - valid_offset - 128 - 4;        if (random1_size > 0) {            srs_freep(random1);            random1 = new char[random1_size];            stream->read_bytes(random1, random1_size);        }                return ret;    }        int key_block::calc_valid_offset()    {        int max_offset_size = 764 - 128 - 4;                int valid_offset = 0;        u_int8_t* pp = (u_int8_t*)&offset;        valid_offset += *pp++;        valid_offset += *pp++;        valid_offset += *pp++;        valid_offset += *pp++;            return valid_offset % max_offset_size;    }        digest_block::digest_block()    {        offset = (int32_t)rand();        random0 = NULL;        random1 = NULL;                int valid_offset = calc_valid_offset();        srs_assert(valid_offset >= 0);                random0_size = valid_offset;        if (random0_size > 0) {            random0 = new char[random0_size];            srs_random_generate(random0, random0_size);            snprintf(random0, random0_size, "%s", RTMP_SIG_SRS_HANDSHAKE);        }                srs_random_generate(digest, sizeof(digest));                random1_size = 764 - 4 - valid_offset - 32;        if (random1_size > 0) {            random1 = new char[random1_size];            srs_random_generate(random1, random1_size);            snprintf(random1, random1_size, "%s", RTMP_SIG_SRS_HANDSHAKE);        }    }        digest_block::~digest_block()    {        srs_freep(random0);        srs_freep(random1);    }    int digest_block::parse(SrsStream* stream)    {        int ret = ERROR_SUCCESS;                // the digest must be 764 bytes.        srs_assert(stream->require(764));                offset = stream->read_4bytes();                int valid_offset = calc_valid_offset();        srs_assert(valid_offset >= 0);                random0_size = valid_offset;        if (random0_size > 0) {            srs_freep(random0);            random0 = new char[random0_size];            stream->read_bytes(random0, random0_size);        }                stream->read_bytes(digest, 32);                random1_size = 764 - 4 - valid_offset - 32;        if (random1_size > 0) {            srs_freep(random1);            random1 = new char[random1_size];            stream->read_bytes(random1, random1_size);        }                return ret;    }        int digest_block::calc_valid_offset()    {        int max_offset_size = 764 - 32 - 4;                int valid_offset = 0;        u_int8_t* pp = (u_int8_t*)&offset;        valid_offset += *pp++;        valid_offset += *pp++;        valid_offset += *pp++;        valid_offset += *pp++;            return valid_offset % max_offset_size;    }        c1s1_strategy::c1s1_strategy()    {    }        c1s1_strategy::~c1s1_strategy()    {    }        char* c1s1_strategy::get_digest()    {        return digest.digest;    }        char* c1s1_strategy::get_key()    {        return key.key;    }        int c1s1_strategy::dump(c1s1* owner, char* _c1s1, int size)    {        srs_assert(size == 1536);        return copy_to(owner, _c1s1, size, true);    }        int c1s1_strategy::c1_create(c1s1* owner)    {        int ret = ERROR_SUCCESS;                // generate digest        char* c1_digest = NULL;                if ((ret = calc_c1_digest(owner, c1_digest)) != ERROR_SUCCESS) {            srs_error("sign c1 error, failed to calc digest. ret=%d", ret);            return ret;        }                srs_assert(c1_digest != NULL);        SrsAutoFree(char, c1_digest);                memcpy(digest.digest, c1_digest, 32);                return ret;    }        int c1s1_strategy::c1_validate_digest(c1s1* owner, bool& is_valid)    {        int ret = ERROR_SUCCESS;                char* c1_digest = NULL;                if ((ret = calc_c1_digest(owner, c1_digest)) != ERROR_SUCCESS) {            srs_error("validate c1 error, failed to calc digest. ret=%d", ret);            return ret;        }                srs_assert(c1_digest != NULL);        SrsAutoFree(char, c1_digest);                is_valid = srs_bytes_equals(digest.digest, c1_digest, 32);                return ret;    }        int c1s1_strategy::s1_create(c1s1* owner, c1s1* c1)    {        int ret = ERROR_SUCCESS;        SrsDH dh;                // ensure generate 128bytes public key.        if ((ret = dh.initialize(true)) != ERROR_SUCCESS) {            return ret;        }                // directly generate the public key.        // @see: https://github.com/winlinvip/simple-rtmp-server/issues/148        int pkey_size = 128;        if ((ret = dh.copy_shared_key(c1->get_key(), 128, key.key, pkey_size)) != ERROR_SUCCESS) {            srs_error("calc s1 key failed. ret=%d", ret);            return ret;        }        srs_assert(pkey_size == 128);        srs_verbose("calc s1 key success.");                    char* s1_digest = NULL;        if ((ret = calc_s1_digest(owner, s1_digest))  != ERROR_SUCCESS) {            srs_error("calc s1 digest failed. ret=%d", ret);            return ret;        }        srs_verbose("calc s1 digest success.");                srs_assert(s1_digest != NULL);        SrsAutoFree(char, s1_digest);                memcpy(digest.digest, s1_digest, 32);        srs_verbose("copy s1 key success.");                return ret;    }        int c1s1_strategy::s1_validate_digest(c1s1* owner, bool& is_valid)    {        int ret = ERROR_SUCCESS;                char* s1_digest = NULL;                if ((ret = calc_s1_digest(owner, s1_digest)) != ERROR_SUCCESS) {            srs_error("validate s1 error, failed to calc digest. ret=%d", ret);            return ret;        }                srs_assert(s1_digest != NULL);        SrsAutoFree(char, s1_digest);                is_valid = srs_bytes_equals(digest.digest, s1_digest, 32);                return ret;    }        int c1s1_strategy::calc_c1_digest(c1s1* owner, char*& c1_digest)    {        int ret = ERROR_SUCCESS;        /**        * c1s1 is splited by digest:        *     c1s1-part1: n bytes (time, version, key and digest-part1).        *     digest-data: 32bytes        *     c1s1-part2: (1536-n-32)bytes (digest-part2)        * @return a new allocated bytes, user must free it.        */        char* c1s1_joined_bytes = new char[1536 -32];        SrsAutoFree(char, c1s1_joined_bytes);        if ((ret = copy_to(owner, c1s1_joined_bytes, 1536 - 32, false)) != ERROR_SUCCESS) {            return ret;        }                c1_digest = new char[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 30, c1s1_joined_bytes, 1536 - 32, c1_digest)) != ERROR_SUCCESS) {            srs_freep(c1_digest);            srs_error("calc digest for c1 failed. ret=%d", ret);            return ret;        }        srs_verbose("digest calculated for c1");                return ret;    }        int c1s1_strategy::calc_s1_digest(c1s1* owner, char*& s1_digest)    {        int ret = ERROR_SUCCESS;        /**        * c1s1 is splited by digest:        *     c1s1-part1: n bytes (time, version, key and digest-part1).        *     digest-data: 32bytes        *     c1s1-part2: (1536-n-32)bytes (digest-part2)        * @return a new allocated bytes, user must free it.        */        char* c1s1_joined_bytes = new char[1536 -32];        SrsAutoFree(char, c1s1_joined_bytes);        if ((ret = copy_to(owner, c1s1_joined_bytes, 1536 - 32, false)) != ERROR_SUCCESS) {            return ret;        }                s1_digest = new char[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 36, c1s1_joined_bytes, 1536 - 32, s1_digest)) != ERROR_SUCCESS) {            srs_freep(s1_digest);            srs_error("calc digest for s1 failed. ret=%d", ret);            return ret;        }        srs_verbose("digest calculated for s1");        return ret;    }        void c1s1_strategy::copy_time_version(SrsStream* stream, c1s1* owner)    {        srs_assert(stream->require(8));                // 4bytes time        stream->write_4bytes(owner->time);        // 4bytes version        stream->write_4bytes(owner->version);    }    void c1s1_strategy::copy_key(SrsStream* stream)    {        srs_assert(key.random0_size >= 0);        srs_assert(key.random1_size >= 0);                int total = key.random0_size + 128 + key.random1_size + 4;        srs_assert(stream->require(total));                // 764bytes key block        if (key.random0_size > 0) {            stream->write_bytes(key.random0, key.random0_size);        }                stream->write_bytes(key.key, 128);                if (key.random1_size > 0) {            stream->write_bytes(key.random1, key.random1_size);        }                stream->write_4bytes(key.offset);    }    void c1s1_strategy::copy_digest(SrsStream* stream, bool with_digest)    {        srs_assert(key.random0_size >= 0);        srs_assert(key.random1_size >= 0);                int total = 4 + digest.random0_size + digest.random1_size;        if (with_digest) {            total += 32;        }        srs_assert(stream->require(total));                // 732bytes digest block without the 32bytes digest-data        // nbytes digest block part1        stream->write_4bytes(digest.offset);                // digest random padding.        if (digest.random0_size > 0) {            stream->write_bytes(digest.random0, digest.random0_size);        }                // digest        if (with_digest) {            stream->write_bytes(digest.digest, 32);        }                // nbytes digest block part2        if (digest.random1_size > 0) {            stream->write_bytes(digest.random1, digest.random1_size);        }    }        c1s1_strategy_schema0::c1s1_strategy_schema0()    {    }        c1s1_strategy_schema0::~c1s1_strategy_schema0()    {    }        srs_schema_type c1s1_strategy_schema0::schema()    {        return srs_schema0;    }        int c1s1_strategy_schema0::parse(char* _c1s1, int size)    {        int ret = ERROR_SUCCESS;                srs_assert(size == 1536);                SrsStream stream;                if ((ret = stream.initialize(_c1s1 + 8, 764)) != ERROR_SUCCESS) {            return ret;        }                if ((ret = key.parse(&stream)) != ERROR_SUCCESS) {            srs_error("parse the c1 key failed. ret=%d", ret);            return ret;        }                if ((ret = stream.initialize(_c1s1 + 8 + 764, 764)) != ERROR_SUCCESS) {            return ret;        }        if ((ret = digest.parse(&stream)) != ERROR_SUCCESS) {            srs_error("parse the c1 digest failed. ret=%d", ret);            return ret;        }                srs_verbose("parse c1 key-digest success");                return ret;    }        int c1s1_strategy_schema0::copy_to(c1s1* owner, char* bytes, int size, bool with_digest)    {        int ret = ERROR_SUCCESS;                if (with_digest) {            srs_assert(size == 1536);        } else {            srs_assert(size == 1504);        }                SrsStream stream;                if ((ret = stream.initialize(bytes, size)) != ERROR_SUCCESS) {            return ret;        }                copy_time_version(&stream, owner);        copy_key(&stream);        copy_digest(&stream, with_digest);                srs_assert(stream.empty());                return ret;    }        c1s1_strategy_schema1::c1s1_strategy_schema1()    {    }        c1s1_strategy_schema1::~c1s1_strategy_schema1()    {    }        srs_schema_type c1s1_strategy_schema1::schema()    {        return srs_schema1;    }        int c1s1_strategy_schema1::parse(char* _c1s1, int size)    {        int ret = ERROR_SUCCESS;                srs_assert(size == 1536);                SrsStream stream;                if ((ret = stream.initialize(_c1s1 + 8, 764)) != ERROR_SUCCESS) {            return ret;        }        if ((ret = digest.parse(&stream)) != ERROR_SUCCESS) {            srs_error("parse the c1 digest failed. ret=%d", ret);            return ret;        }                if ((ret = stream.initialize(_c1s1 + 8 + 764, 764)) != ERROR_SUCCESS) {            return ret;        }                if ((ret = key.parse(&stream)) != ERROR_SUCCESS) {            srs_error("parse the c1 key failed. ret=%d", ret);            return ret;        }                srs_verbose("parse c1 digest-key success");                return ret;    }        int c1s1_strategy_schema1::copy_to(c1s1* owner, char* bytes, int size, bool with_digest)    {        int ret = ERROR_SUCCESS;                if (with_digest) {            srs_assert(size == 1536);        } else {            srs_assert(size == 1504);        }                SrsStream stream;                if ((ret = stream.initialize(bytes, size)) != ERROR_SUCCESS) {            return ret;        }                copy_time_version(&stream, owner);        copy_digest(&stream, with_digest);        copy_key(&stream);                srs_assert(stream.empty());                return ret;    }        c1s1::c1s1()    {        payload = NULL;    }    c1s1::~c1s1()    {        srs_freep(payload);    }        srs_schema_type c1s1::schema()    {        srs_assert(payload != NULL);        return payload->schema();    }        char* c1s1::get_digest()    {        srs_assert(payload != NULL);        return payload->get_digest();    }        char* c1s1::get_key()    {        srs_assert(payload != NULL);        return payload->get_key();    }        int c1s1::dump(char* _c1s1, int size)    {        srs_assert(size == 1536);        srs_assert(payload != NULL);        return payload->dump(this, _c1s1, size);    }        int c1s1::parse(char* _c1s1, int size, srs_schema_type schema)    {        int ret = ERROR_SUCCESS;                srs_assert(size == 1536);                if (schema != srs_schema0 && schema != srs_schema1) {            ret = ERROR_RTMP_CH_SCHEMA;            srs_error("parse c1 failed. invalid schema=%d, ret=%d", schema, ret);            return ret;        }                SrsStream stream;                if ((ret = stream.initialize(_c1s1, size)) != ERROR_SUCCESS) {            return ret;        }                time = stream.read_4bytes();        version = stream.read_4bytes(); // client c1 version                srs_freep(payload);        if (schema == srs_schema0) {            payload = new c1s1_strategy_schema0();        } else {            payload = new c1s1_strategy_schema1();        }        return payload->parse(_c1s1, size);    }        int c1s1::c1_create(srs_schema_type schema)    {        int ret = ERROR_SUCCESS;                if (schema != srs_schema0 && schema != srs_schema1) {            ret = ERROR_RTMP_CH_SCHEMA;            srs_error("create c1 failed. invalid schema=%d, ret=%d", schema, ret);            return ret;        }                // client c1 time and version        time = ::time(NULL);        version = 0x80000702; // client c1 version        // generate signature by schema        srs_freep(payload);        if (schema == srs_schema0) {            payload = new c1s1_strategy_schema0();        } else {            payload = new c1s1_strategy_schema1();        }                return payload->c1_create(this);    }        int c1s1::c1_validate_digest(bool& is_valid)    {        is_valid = false;        srs_assert(payload);        return payload->c1_validate_digest(this, is_valid);    }        int c1s1::s1_create(c1s1* c1)    {        int ret = ERROR_SUCCESS;                if (c1->schema() != srs_schema0 && c1->schema() != srs_schema1) {            ret = ERROR_RTMP_CH_SCHEMA;            srs_error("create s1 failed. invalid schema=%d, ret=%d", c1->schema(), ret);            return ret;        }                time = ::time(NULL);        version = 0x01000504; // server s1 version                srs_freep(payload);        if (c1->schema() == srs_schema0) {            payload = new c1s1_strategy_schema0();        } else {            payload = new c1s1_strategy_schema1();        }                return payload->s1_create(this, c1);    }        int c1s1::s1_validate_digest(bool& is_valid)    {        is_valid = false;        srs_assert(payload);        return payload->s1_validate_digest(this, is_valid);    }        c2s2::c2s2()    {        srs_random_generate(random, 1504);                int size = snprintf(random, 1504, "%s", RTMP_SIG_SRS_HANDSHAKE);        srs_assert(++size < 1504);        snprintf(random + 1504 - size, size, "%s", RTMP_SIG_SRS_HANDSHAKE);                srs_random_generate(digest, 32);    }        c2s2::~c2s2()    {    }        int c2s2::dump(char* _c2s2, int size)    {        srs_assert(size == 1536);                memcpy(_c2s2, random, 1504);        memcpy(_c2s2 + 1504, digest, 32);                return ERROR_SUCCESS;    }        int c2s2::parse(char* _c2s2, int size)    {        srs_assert(size == 1536);                memcpy(random, _c2s2, 1504);        memcpy(digest, _c2s2 + 1504, 32);                return ERROR_SUCCESS;    }        int c2s2::c2_create(c1s1* s1)    {        int ret = ERROR_SUCCESS;                char temp_key[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 62, s1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {            srs_error("create c2 temp key failed. ret=%d", ret);            return ret;        }        srs_verbose("generate c2 temp key success.");                char _digest[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {            srs_error("create c2 digest failed. ret=%d", ret);            return ret;        }        srs_verbose("generate c2 digest success.");                memcpy(digest, _digest, 32);                return ret;    }        int c2s2::c2_validate(c1s1* s1, bool& is_valid)    {        is_valid = false;        int ret = ERROR_SUCCESS;                char temp_key[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(SrsGenuineFPKey, 62, s1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {            srs_error("create c2 temp key failed. ret=%d", ret);            return ret;        }        srs_verbose("generate c2 temp key success.");                char _digest[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {            srs_error("create c2 digest failed. ret=%d", ret);            return ret;        }        srs_verbose("generate c2 digest success.");                is_valid = srs_bytes_equals(digest, _digest, 32);                return ret;    }        int c2s2::s2_create(c1s1* c1)    {        int ret = ERROR_SUCCESS;                char temp_key[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 68, c1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {            srs_error("create s2 temp key failed. ret=%d", ret);            return ret;        }        srs_verbose("generate s2 temp key success.");                char _digest[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {            srs_error("create s2 digest failed. ret=%d", ret);            return ret;        }        srs_verbose("generate s2 digest success.");                memcpy(digest, _digest, 32);                return ret;    }        int c2s2::s2_validate(c1s1* c1, bool& is_valid)    {        is_valid = false;        int ret = ERROR_SUCCESS;                char temp_key[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(SrsGenuineFMSKey, 68, c1->get_digest(), 32, temp_key)) != ERROR_SUCCESS) {            srs_error("create s2 temp key failed. ret=%d", ret);            return ret;        }        srs_verbose("generate s2 temp key success.");                char _digest[__SRS_OpensslHashSize];        if ((ret = openssl_HMACsha256(temp_key, 32, random, 1504, _digest)) != ERROR_SUCCESS) {            srs_error("create s2 digest failed. ret=%d", ret);            return ret;        }        srs_verbose("generate s2 digest success.");                is_valid = srs_bytes_equals(digest, _digest, 32);                return ret;    }}#endifSrsSimpleHandshake::SrsSimpleHandshake(){}SrsSimpleHandshake::~SrsSimpleHandshake(){}int SrsSimpleHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io){    int ret = ERROR_SUCCESS;        ssize_t nsize;        if ((ret = hs_bytes->read_c0c1(io)) != ERROR_SUCCESS) {        return ret;    }    // plain text required.    if (hs_bytes->c0c1[0] != 0x03) {        ret = ERROR_RTMP_PLAIN_REQUIRED;        srs_warn("only support rtmp plain text. ret=%d", ret);        return ret;    }    srs_verbose("check c0 success, required plain text.");        if ((ret = hs_bytes->create_s0s1s2(hs_bytes->c0c1 + 1)) != ERROR_SUCCESS) {        return ret;    }        if ((ret = io->write(hs_bytes->s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {        srs_warn("simple handshake send s0s1s2 failed. ret=%d", ret);        return ret;    }    srs_verbose("simple handshake send s0s1s2 success.");        if ((ret = hs_bytes->read_c2(io)) != ERROR_SUCCESS) {        return ret;    }        srs_trace("simple handshake success.");        return ret;}int SrsSimpleHandshake::handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io){    int ret = ERROR_SUCCESS;        ssize_t nsize;        // simple handshake    if ((ret = hs_bytes->create_c0c1()) != ERROR_SUCCESS) {        return ret;    }        if ((ret = io->write(hs_bytes->c0c1, 1537, &nsize)) != ERROR_SUCCESS) {        srs_warn("write c0c1 failed. ret=%d", ret);        return ret;    }    srs_verbose("write c0c1 success.");        if ((ret = hs_bytes->read_s0s1s2(io)) != ERROR_SUCCESS) {        return ret;    }        // plain text required.    if (hs_bytes->s0s1s2[0] != 0x03) {        ret = ERROR_RTMP_HANDSHAKE;        srs_warn("handshake failed, plain text required. ret=%d", ret);        return ret;    }        if ((ret = hs_bytes->create_c2()) != ERROR_SUCCESS) {        return ret;    }    if ((ret = io->write(hs_bytes->c2, 1536, &nsize)) != ERROR_SUCCESS) {        srs_warn("simple handshake write c2 failed. ret=%d", ret);        return ret;    }    srs_verbose("simple handshake write c2 success.");        srs_trace("simple handshake success.");        return ret;}SrsComplexHandshake::SrsComplexHandshake(){}SrsComplexHandshake::~SrsComplexHandshake(){}#ifndef SRS_AUTO_SSLint SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* /*hs_bytes*/, ISrsProtocolReaderWriter* /*io*/){    srs_trace("directly use simple handshake for ssl disabled.");    return ERROR_RTMP_TRY_SIMPLE_HS;}#elseint SrsComplexHandshake::handshake_with_client(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io){    int ret = ERROR_SUCCESS;    ssize_t nsize;        if ((ret = hs_bytes->read_c0c1(io)) != ERROR_SUCCESS) {        return ret;    }        // decode c1    c1s1 c1;    // try schema0.    // @remark, use schema0 to make flash player happy.    if ((ret = c1.parse(hs_bytes->c0c1 + 1, 1536, srs_schema0)) != ERROR_SUCCESS) {        srs_error("parse c1 schema%d error. ret=%d", srs_schema0, ret);        return ret;    }    // try schema1    bool is_valid = false;    if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {        srs_info("schema0 failed, try schema1.");        if ((ret = c1.parse(hs_bytes->c0c1 + 1, 1536, srs_schema1)) != ERROR_SUCCESS) {            srs_error("parse c1 schema%d error. ret=%d", srs_schema1, ret);            return ret;        }                if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {            ret = ERROR_RTMP_TRY_SIMPLE_HS;            srs_info("all schema valid failed, try simple handshake. ret=%d", ret);            return ret;        }    } else {        srs_info("schema0 is ok.");    }    srs_verbose("decode c1 success.");        // encode s1    c1s1 s1;    if ((ret = s1.s1_create(&c1)) != ERROR_SUCCESS) {        srs_error("create s1 from c1 failed. ret=%d", ret);        return ret;    }    srs_verbose("create s1 from c1 success.");    // verify s1    if ((ret = s1.s1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {        ret = ERROR_RTMP_TRY_SIMPLE_HS;        srs_info("verify s1 failed, try simple handshake. ret=%d", ret);        return ret;    }    srs_verbose("verify s1 success.");        c2s2 s2;    if ((ret = s2.s2_create(&c1)) != ERROR_SUCCESS) {        srs_error("create s2 from c1 failed. ret=%d", ret);        return ret;    }    srs_verbose("create s2 from c1 success.");    // verify s2    if ((ret = s2.s2_validate(&c1, is_valid)) != ERROR_SUCCESS || !is_valid) {        ret = ERROR_RTMP_TRY_SIMPLE_HS;        srs_info("verify s2 failed, try simple handshake. ret=%d", ret);        return ret;    }    srs_verbose("verify s2 success.");        // sendout s0s1s2    if ((ret = hs_bytes->create_s0s1s2()) != ERROR_SUCCESS) {        return ret;    }    if ((ret = s1.dump(hs_bytes->s0s1s2 + 1, 1536)) != ERROR_SUCCESS) {        return ret;    }    if ((ret = s2.dump(hs_bytes->s0s1s2 + 1537, 1536)) != ERROR_SUCCESS) {        return ret;    }    if ((ret = io->write(hs_bytes->s0s1s2, 3073, &nsize)) != ERROR_SUCCESS) {        srs_warn("complex handshake send s0s1s2 failed. ret=%d", ret);        return ret;    }    srs_verbose("complex handshake send s0s1s2 success.");        // recv c2    if ((ret = hs_bytes->read_c2(io)) != ERROR_SUCCESS) {        return ret;    }    c2s2 c2;    if ((ret = c2.parse(hs_bytes->c2, 1536)) != ERROR_SUCCESS) {        return ret;    }    srs_verbose("complex handshake read c2 success.");        // verify c2    // never verify c2, for ffmpeg will failed.    // it's ok for flash.        srs_trace("complex handshake success");        return ret;}#endif#ifndef SRS_AUTO_SSLint SrsComplexHandshake::handshake_with_server(SrsHandshakeBytes* /*hs_bytes*/, ISrsProtocolReaderWriter* /*io*/){    return ERROR_RTMP_TRY_SIMPLE_HS;}#elseint SrsComplexHandshake::handshake_with_server(SrsHandshakeBytes* hs_bytes, ISrsProtocolReaderWriter* io){    int ret = ERROR_SUCCESS;    ssize_t nsize;        // complex handshake    if ((ret = hs_bytes->create_c0c1()) != ERROR_SUCCESS) {        return ret;    }        // sign c1    c1s1 c1;    // @remark, FMS requires the schema1(digest-key), or connect failed.    if ((ret = c1.c1_create(srs_schema1)) != ERROR_SUCCESS) {        return ret;    }    if ((ret = c1.dump(hs_bytes->c0c1 + 1, 1536)) != ERROR_SUCCESS) {        return ret;    }    // verify c1    bool is_valid;    if ((ret = c1.c1_validate_digest(is_valid)) != ERROR_SUCCESS || !is_valid) {        ret = ERROR_RTMP_TRY_SIMPLE_HS;        return ret;    }        if ((ret = io->write(hs_bytes->c0c1, 1537, &nsize)) != ERROR_SUCCESS) {        srs_warn("write c0c1 failed. ret=%d", ret);        return ret;    }    srs_verbose("write c0c1 success.");        // s0s1s2    if ((ret = hs_bytes->read_s0s1s2(io)) != ERROR_SUCCESS) {        return ret;    }        // plain text required.    if (hs_bytes->s0s1s2[0] != 0x03) {        ret = ERROR_RTMP_HANDSHAKE;        srs_warn("handshake failed, plain text required. ret=%d", ret);        return ret;    }        // verify s1s2    c1s1 s1;    if ((ret = s1.parse(hs_bytes->s0s1s2 + 1, 1536, c1.schema())) != ERROR_SUCCESS) {        return ret;    }        // never verify the s1,    // for if forward to nginx-rtmp, verify s1 will failed,    // TODO: FIXME: find the handshake schema of nginx-rtmp.        // c2    if ((ret = hs_bytes->create_c2()) != ERROR_SUCCESS) {        return ret;    }    c2s2 c2;    if ((ret = c2.c2_create(&s1)) != ERROR_SUCCESS) {        return ret;    }    if ((ret = c2.dump(hs_bytes->c2, 1536)) != ERROR_SUCCESS) {        return ret;    }    if ((ret = io->write(hs_bytes->c2, 1536, &nsize)) != ERROR_SUCCESS) {        srs_warn("complex handshake write c2 failed. ret=%d", ret);        return ret;    }    srs_verbose("complex handshake write c2 success.");        srs_trace("complex handshake success.");        return ret;}#endif

0 0
原创粉丝点击