Android7.0 PowerManagerService(2) WakeLock的使用及流程

来源:互联网 发布:移动网络的虚拟运营商 编辑:程序博客网 时间:2024/05/22 11:58

作为移动终端,电量是一种稀缺资源,需要尽可能的节省。于是,Android系统在空闲时,会主动进入到休眠状态。
我们知道整个Android系统中运行着很多个进程,因此必须有一种机制能够知道每个进程是否正在进行重要的工作,只有这样Android系统才能对整个终端当前的状态做出判断。

显然我们不能启动一个进程,去主动监管其它所有进程的工作状态,这样CPU开销太大,反而加剧了电量的消耗。为此Android引入了基于WakeLock的电量管理机制,而PMS就是专门负责管理WakeLock的进程。

个人觉得WakeLock机制的思想,有点类似于早期通信领域局域网中的令牌环机制。当局域网中有设备需要发送数据时,需要申请令牌(Token),申请到令牌才能发送数据;设备发送完数据后,再释放掉令牌。

与此相似,Android设备中运行的进程需要使用电量资源时,也需要向PMS申请一个WakeLock;当工作完成后,就释放掉申请的WakeLock。PMS通过判断当前是否还有进程持有WakeLock,就能得出系统是否空闲的结论。

从这里也可以看出,当我们写一个永不停止工作的线程,但不申请WakeLock时,系统仍然可以休眠。在休眠时,CPU不会再耗费资源去调度该线程,于是“永不停止工作”被打上了引号。

接下来,我们就来看看PMS中的WakeLock。

一、创建WakeLock
我们以RIL.java为例,看看一般情况下,PMS以外的其它进程如何使用WakeLock。
在RIL.java的构造函数中:

public RIL(Context context, int preferredNetworkType,        int cdmaSubscription, Integer instanceId) {    .............    PowerManager pm = (PowerManager)context.getSystemService(Context.POWER_SERVICE);    //获取WakeLock,第一个参数决定了WakeLock的等级和flag    mWakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, RILJ_LOG_TAG);    //默认WakeLocked会ReferenceCounted,即一次申请对应一次释放    //设为false后,一次释放就可以对应所有的申请    mWakeLock.setReferenceCounted(false);    ...........    //RIL.java中自己维护了WakeLockCount    mWakeLockCount = 0;    ...........}

从上面的代码,可以看出调用PowerManager的newWakeLock函数,可以创建出WakeLock。

我们看看newWakeLock函数定义:

public WakeLock newWakeLock(int levelAndFlags, String tag) {    //检查参数有效性,即levelAndFlags必须对应于PowerManager中定义的WakeLock级别和flag,tag不能为空    validateWakeLockParameters(levelAndFlags, tag);    //此WakeLock为PowerManager定义的内部类    return new WakeLock(levelAndFlags, tag, mContext.getOpPackageName());}

1、WakeLock Level
newWakeLock中的第一个参数对应于WakeLock的级别和标志位构成的位图。
目前,在PowerManger中一共为WakeLock定义了7种level。

/*** Wake lock level: Ensures that the CPU is running; the screen and keyboard* backlight will be allowed to go off.* * If the user presses the power button, then the screen will be turned off* but the CPU will be kept on until all partial wake locks have been released.* /public static final int PARTIAL_WAKE_LOCK = 0x00000001;/*** Wake lock level: Ensures that the screen is on (but may be dimmed);* the keyboard backlight will be allowed to go off.** If the user presses the power button, then the SCREEN_DIM_WAKE_LOCK will be* implicitly released by the system, causing both the screen and the CPU to be turned off.*/@Deprecatedpublic static final int SCREEN_DIM_WAKE_LOCK = 0x00000006;/*** Wake lock level: Ensures that the screen is on at full brightness;* the keyboard backlight will be allowed to go off.**If the user presses the power button, then the SCREEN_BRIGHT_WAKE_LOCK will be* implicitly released by the system, causing both the screen and the CPU to be turned off.*/@Deprecatedpublic static final int SCREEN_BRIGHT_WAKE_LOCK = 0x0000000a;/*** Wake lock level: Ensures that the screen and keyboard backlight are on at* full brightness.**If the user presses the power button, then the FULL_WAKE_LOCK will be* implicitly released by the system, causing both the screen and the CPU to be turned off.*/@Deprecatedpublic static final int FULL_WAKE_LOCK = 0x0000001a;/*** Wake lock level: Turns the screen off when the proximity sensor activates.* If the proximity sensor detects that an object is nearby, the screen turns off* immediately.  Shortly after the object moves away, the screen turns on again.** A proximity wake lock does not prevent the device from falling asleep* unlike link FULL_WAKE_LOCK, SCREEN_BRIGHT_WAKE_LOCK and SCREEN_DIM_WAKE_LOCK.* If there is no user activity and no other wake locks are held, then the device will fall asleep (and lock) as usual.* However, the device will not fall asleep while the screen has been turned off* by the proximity sensor because it effectively counts as ongoing user activity.** Cannot be used with ACQUIRE_CAUSES_WAKEUP (WakeLock的flag).*///例如拨号,打通后接听电话,屏幕变黑public static final int PROXIMITY_SCREEN_OFF_WAKE_LOCK = 0x00000020;/*** Wake lock level: Put the screen in a low power state and allow the CPU to suspend* if no other wake locks are held.* * This is used by the dream manager to implement doze mode.  It currently* has no effect unless the power manager is in the dozing state.* /public static final int DOZE_WAKE_LOCK = 0x00000040;/*** Wake lock level: Keep the device awake enough to allow drawing to occur.** This is used by the window manager to allow applications to draw while the* system is dozing.  It currently has no effect unless the power manager is in* the dozing state.* /public static final int DRAW_WAKE_LOCK = 0x00000080;

从上面的代码注释可以看出,WakeLock主要用于控制CPU、屏幕和键盘三大部分(当然,现在的Anroid中基本没有键盘了)。
对于PARTIAL_WAKE_LOCK、SCREEN_DIM_WAKE_LOCK、SCREEN_BRIGHT_WAKE_LOCK和FULL_WAKE_LOCK而言,不考虑Power键的话,随着等级的提高,权限也相应增大,即持有高等级的锁,能够激活的部分越多;如果考虑Power键的话,PARTIAL_WAKE_LOCK可以保证CPU不休眠,反而是权限最大的。

PROXIMITY_SCREEN_OFF_WAKE_LOCK、DOZE_WAKE_LOCK和DRAW_WAKE_LOCK都是和具体场景相关的锁。

2、WakeLock Flag
PowerManager定义的WakeLock Flag很多,无法一一列举,就看一下比较常用的:

/*** Wake lock flag: Turn the screen on when the wake lock is acquired.** Normally wake locks don't actually wake the device, they just cause* the screen to remain on once it's already on.  Think of the video player* application as the normal behavior.  Notifications that pop up and want* the device to be on are the exception; use this flag to be like them.* * Cannot be used with PARTIAL_WAKE_LOCK.* /public static final int ACQUIRE_CAUSES_WAKEUP = 0x10000000;/*** Wake lock flag: When this wake lock is released, poke the user activity timer* so the screen stays on for a little longer.* * Will not turn the screen on if it is not already on.* * Cannot be used with PARTIAL_WAKE_LOCK.* /public static final int ON_AFTER_RELEASE = 0x20000000;..................

总结一下上面的内容,如下所示:

WakeLock Flag一般与WakeLock Level组合使用,使用的时候参照一下注释即可。

3、WakeLock的构造函数
最后,我们来看看WakeLock的构造函数:

WakeLock(int flags, String tag, String packageName) {    //level and flag    mFlags = flags;    //创建类对应的打印Tag    mTag = tag;    //创建类的类名            mPackageName = packageName;    //创建一个Binder对象    //PMS将作为该Binder的客户端监听对应进程是否死亡    mToken = new Binder();    mTraceName = "WakeLock (" + mTag + ")";}

WakeLock的构造函数中需要注意的地方是,创建了一个Binder对象。
回忆一下RIL.java中创建WakeLock的过程,我们就知道这个Binder对象应该是创建在RIL.java所在的Phone进程中。

二、Acquire WakeLock
从上面的分析,我们知道一个进程创建的WakeLock,实际上表明了该进程执行某个工作时对电量的需求,例如声明该工作需要保持屏幕处于点亮状态,或该工作需要CPU处于唤醒态等。
因此,进程创建了WakeLock后,需要将WakeLock发送到PMS中,让PMS明白该进程的需求。
这种将WakeLock通知到PMS的过程,就被称为acquire WakeLock。

同样,我们还是以RIL.java中的使用过程举例:

private void send(RILRequest rr) {    Message msg;    if (mSocket == null) {        rr.onError(RADIO_NOT_AVAILABLE, null);        rr.release();        return;    }    msg = mSender.obtainMessage(EVENT_SEND, rr);    //重点在这里    acquireWakeLock(rr, FOR_WAKELOCK);    msg.sendToTarget();}

当AP侧向modem发送请求时,将要调用RIL.java的send函数。send函数将会发送消息给RILSender,后者利用socket将消息发送给rild进程。
从上面的代码可以看出,在发送消息给RILSender之前,调用了acquireWakeLock函数:

private void acquireWakeLock(RILRequest rr, int wakeLockType) {    synchronized(rr) {        .............        switch(wakeLockType) {            case FOR_WAKELOCK:                synchronized (mWakeLock) {                    //调用acquire函数                    mWakeLock.acquire();                    mWakeLockCount++;                    mWlSequenceNum++;                    ............            }            break;            .........        }        rr.mWakeLockType = wakeLockType;    }}

我们跟进一下PowerManager中WakeLock的acquire函数:

public void acquire() {    synchronized (mToken) {        acquireLocked();    }}private void acquireLocked() {    //前面已经提过,RIL.java中已经将mRefCounted置为false    //如果不将mRefCounted置为false,意味着acquire和release必须一一对应    //那么每个WakeLock只能acquire一次    if (!mRefCounted || mCount++ == 0) {        ........        try {            mService.acquireWakeLock(mToken, mFlags, mTag, mPackageName, mWorkSource,                    mHistoryTag);        } catch (RemoteException e) {            throw e.rethrowFromSystemServer();        }        mHeld = true;    }}

容易看出实际的工作流程将通过Binder通信进入到PMS中:

public void acquireWakeLock(IBinder lock, int flags, String tag, String packageName,        WorkSource ws, String historyTag) {    //参数和权限检查    ............    final int uid = Binder.getCallingUid();    final int pid = Binder.getCallingPid();    final long ident = Binder.clearCallingIdentity();    try {        acquireWakeLockInternal(lock, flags, tag, packageName, ws, historyTag, uid, pid);    } finally {        Binder.restoreCallingIdentity(ident);    }}private void acquireWakeLockInternal(IBinder lock, int flags, String tag, String packageName,        WorkSource ws, String historyTag, int uid, int pid) {    synchronized (mLock) {        ...........        //PMS中也定义了WakeLock内部类        WakeLock wakeLock;        //PMS中维持了一个ArrayList,记录当前已申请的WakeLock        //findWakeLockIndexLocked查找ArrayList,判断参数对应的WakeLock,是否在之前被申请过        int index = findWakeLockIndexLocked(lock);        boolean notifyAcquire;        if (index >= 0) {            //如果index大于0,说明此时Acquire的是一个旧的WakeLock            //例如RIL会多次调用send函数,于是除第一次外,都会进入这个分支            wakeLock = mWakeLocks.get(index);            //这是判断WakeLock对应的成员变量是否发生改变            if (!wakeLock.hasSameProperties(flags, tag, ws, uid, pid)) {                // Update existing wake lock.  This shouldn't happen but is harmless.                notifyWakeLockChangingLocked(wakeLock, flags, tag, packageName,                        uid, pid, ws, historyTag);                //若wakelock属性发生了变化,更新该属性                wakeLock.updateProperties(flags, tag, packageName, ws, historyTag, uid, pid);            }            notifyAcquire = false;        } else {            //创建一个新的WakeLock,例如RIL第一次调用send就会进入该分支            wakeLock = new WakeLock(lock, flags, tag, packageName, ws, historyTag, uid, pid);            try {                //1、监控申请WakeLock的进程是否死亡                lock.linkToDeath(wakeLock, 0);            } catch (RemoteException ex) {                throw new IllegalArgumentException("Wake lock is already dead.");            }            //添加到wakelock列表            mWakeLocks.add(wakeLock);            //2、特殊处理PARTIAL_WAKE_LOCK            //实际上,根据Doze模式的白名单更新wakelock的disabled变量            setWakeLockDisabledStateLocked(wakeLock);            notifyAcquire = true;        }        //3、处理WakeLock对应的Flag        //实际上判断WakeLock是否有ACQUIRE_CAUSES_WAKEUP,在必要时唤醒屏幕        applyWakeLockFlagsOnAcquireLocked(wakeLock, uid);        mDirty |= DIRTY_WAKE_LOCKS;        //更新电源状态,以后单独分析        updatePowerStateLocked();        if (notifyAcquire) {            // This needs to be done last so we are sure we have acquired the            // kernel wake lock.  Otherwise we have a race where the system may            // go to sleep between the time we start the accounting in battery            // stats and when we actually get around to telling the kernel to            // stay awake.            //通知wakeLock发生变化              //电量统计服务做相关统计            notifyWakeLockAcquiredLocked(wakeLock);        }    }}

如上代码中标注的注释,acquireWakeLockInternal中有几处比较重要的地方,我们一起来分析一下。

1、监听客户端进程死亡
上面的代码中,第一次创建WakeLock后,调用了:

.........lock.linkToDeath(wakeLock, 0);.........

我们将acquire WakeLock的进程定义为PMS的客户端进程,那么上面代码的lock,就是客户端进程中创建的Binder对象的代理。对于RIL而言,就是存在于Phone进程中的Binder的代理。
PMS调用Binder代理的linkToDeath,实际上使得PMS成为了对应进程Binder的客户端。于是,当对应进程死亡后,将通知PMS。
linkToDeath传入的必须是继承IBinder.DeathRecipient的对象,作为进程死亡的”讣告”接收者。

我们看看PMS中WakeLock与此相关的定义:

private final class WakeLock implements IBinder.DeathRecipient {    ...........    @Override    public void binderDied() {        //发现客户端进程死亡后,调用PMS的handleWakeLockDeath进行处理,传入的参数为WakeLock自己        PowerManagerService.this.handleWakeLockDeath(this);    }    .......}

我们看看PMS的handleWakeLockDeath函数:

private void handleWakeLockDeath(WakeLock wakeLock) {    synchronized (mLock) {        ..........        int index = mWakeLocks.indexOf(wakeLock);        if (index < 0) {            return;        }        removeWakeLockLocked(wakeLock, index);    }}

跟进removeWakeLockLocked函数:

private void removeWakeLockLocked(WakeLock wakeLock, int index) {    mWakeLocks.remove(index);    //通知到BatteryStatsService    notifyWakeLockReleasedLocked(wakeLock);    //处理WakeLock对应的flag,与后文applyWakeLockFlagsOnAcquireLocked一起分析    //实际上是判断是否需要立即息屏    applyWakeLockFlagsOnReleaseLocked(wakeLock);    mDirty |= DIRTY_WAKE_LOCKS;    //锁移除后,还是利用updatePowerStateLocked更新电源状态    updatePowerStateLocked();}

2、特殊处理PARTIAL_WAKE_LOCK
PMS处理第一次创建的WakeLock时,还会调用setWakeLockDisabledStateLocked函数进行处理:

private boolean setWakeLockDisabledStateLocked(WakeLock wakeLock) {    //仅会特殊处理PARTIAL_WAKE_LOCK,毕竟PARTIAL_WAKE_LOCK要求按Power键后CPU依然可以工作    if ((wakeLock.mFlags & PowerManager.WAKE_LOCK_LEVEL_MASK)            == PowerManager.PARTIAL_WAKE_LOCK) {        boolean disabled = false;        //设备处于Doze定义的device idle模式时        if (mDeviceIdleMode) {            final int appid = UserHandle.getAppId(wakeLock.mOwnerUid);            // If we are in idle mode, we will ignore all partial wake locks that are            // for application uids that are not whitelisted.            //判断是否为非系统应用                if (appid >= Process.FIRST_APPLICATION_UID &&                    //白名单search                    Arrays.binarySearch(mDeviceIdleWhitelist, appid) < 0 &&                    Arrays.binarySearch(mDeviceIdleTempWhitelist, appid) < 0 &&                    //判断进程的类型                    //ActivityManager中定义的数字最小的为:常驻的操作UI的系统进程                    //因此大概可理解为:数字越大,对处理事件的时效性要求越低                    mUidState.get(wakeLock.mOwnerUid,                            ActivityManager.PROCESS_STATE_CACHED_EMPTY)                            > ActivityManager.PROCESS_STATE_FOREGROUND_SERVICE) {                disabled = true;            }        }        if (wakeLock.mDisabled != disabled) {            wakeLock.mDisabled = disabled;            return true;        }    }    return false;}

上面代码大致的含义就是:
在Android Doze模式下,当终端处于device Idle Mode时,
对于一个非系统应用而言,如果该应用不在系统定义的白名单中,
并且该应用所在进程的类型表明,该进程对事件处理的时效性要求不高,
那么即使该应用申请了PARTIAL_WAKE_LOCK,也不能阻止系统进入休眠状态。

有些设备商,为了优化系统的功耗,就修改了这个地方。
例如,有些系统应用其实也很耗电,因此可以去掉该函数中对非系统应用的限制,对系统应用也进行管控。

3、处理WakeLock对应的Flag
前面的代码已经提到,当acquire WakeLock时,将调用applyWakeLockFlagsOnAcquireLocked处理WakeLock对应的flag;
当由于进程死亡,释放WakeLock时,会调用applyWakeLockFlagsOnReleaseLocked处理WakeLock对应的flag。
从函数命名来看,这两个函数应该有相似的地方。

3.1 applyWakeLockFlagsOnAcquireLocked
我们先看看applyWakeLockFlagsOnAcquireLocked:

private void applyWakeLockFlagsOnAcquireLocked(WakeLock wakeLock, int uid) {    //仅处理ACQUIRE_CAUSES_WAKEUP flag,同时要求WakeLock的level是与screen有关的,    //即FULL_WAKE_LOCK、SCREEN_BRIGHT_WAKE_LOCK和SCREEN_DIM_WAKE_LOCK    if ((wakeLock.mFlags & PowerManager.ACQUIRE_CAUSES_WAKEUP) != 0            && isScreenLock(wakeLock)) {        ..............        wakeUpNoUpdateLocked(SystemClock.uptimeMillis(), wakeLock.mTag, opUid,                opPackageName, opUid);    }}private boolean wakeUpNoUpdateLocked(long eventTime, String reason, int reasonUid,        String opPackageName, int opUid) {    ............    //不满足以下条件,没有唤醒屏幕的必要    if (eventTime < mLastSleepTime || mWakefulness == WAKEFULNESS_AWAKE            || !mBootCompleted || !mSystemReady) {        return false;    }    try {        mLastWakeTime = eventTime;        //修改PMS的一些成员变量,并进行通知        //其中主要的是将mDirty变量的DIRTY_WAKEFULNESS位置为了1        //PMS根据mDirty的位信息管理电源状态,同时唤醒屏幕        setWakefulnessLocked(WAKEFULNESS_AWAKE, 0);        //通知给电源统计服务        mNotifier.onWakeUp(reason, reasonUid, opPackageName, opUid);        //调用userActivityNoUpdateLocked函数        userActivityNoUpdateLocked(                eventTime, PowerManager.USER_ACTIVITY_EVENT_OTHER, 0, reasonUid);    } .....    return true;}

3.1.1 setWakefulnessLocked
我们看看唤醒屏幕相关的操作:

private void setWakefulnessLocked(int wakefulness, int reason) {    if (mWakefulness != wakefulness) {        mWakefulness = wakefulness;        mWakefulnessChanging = true;        mDirty |= DIRTY_WAKEFULNESS;        //定义于frameworks/base/services/core/java/com/android/server/power/Notifier.java中        mNotifier.onWakefulnessChangeStarted(wakefulness, reason);    }}
public void onWakefulnessChangeStarted(final int wakefulness, int reason) {    final boolean interactive = PowerManagerInternal.isInteractive(wakefulness);    .......    // Tell the activity manager about changes in wakefulness, not just interactivity.    mHandler.post(new Runnable() {        @Override        public void run() {            mActivityManagerInternal.onWakefulnessChanged(wakefulness);        }    });    // Handle any early interactive state changes.    // Finish pending incomplete ones from a previous cycle.    if (mInteractive != interactive) {        // Finish up late behaviors if needed.        if (mInteractiveChanging) {            handleLateInteractiveChange();        }        // Start input as soon as we start waking up or going to sleep.        mInputManagerInternal.setInteractive(interactive);        mInputMethodManagerInternal.setInteractive(interactive);        // Notify battery stats.        try {            mBatteryStats.noteInteractive(interactive);        } catch (RemoteException ex) { }        // Handle early behaviors.        mInteractive = interactive;        mInteractiveChangeReason = reason;        mInteractiveChanging = true;        //重点在这个位置        handleEarlyInteractiveChange();    }}/*** Handle early interactive state changes such as getting applications or the lock* screen running and ready for the user to see (such as when turning on the screen).*/private void handleEarlyInteractiveChange() {    synchronized (mLock) {        if (mInteractive) {            // Waking up...            mHandler.post(new Runnable() {                @Override                public void run() {                    EventLog.writeEvent(EventLogTags.POWER_SCREEN_STATE, 1, 0, 0, 0);                    //mPolicy对应于PhoneWindowManager                    mPolicy.startedWakingUp();                }            });            // Send interactive broadcast.            mPendingInteractiveState = INTERACTIVE_STATE_AWAKE;            mPendingWakeUpBroadcast = true;            updatePendingBroadcastLocked();        } else {            // Going to sleep...            // Tell the policy that we started going to sleep.            final int why = translateOffReason(mInteractiveChangeReason);            mHandler.post(new Runnable() {                @Override                public void run() {                    mPolicy.startedGoingToSleep(why);                }            });        }    }}

从上面的代码来看,应该是PhoneWindowManager完成亮屏前的初始化工作,然后回调到PowerManager的wakeUp函数。
整个过程还是比较复杂的,需要单独进行分析,此处不做进一步说明。

3.2 applyWakeLockFlagsOnReleaseLocked
现在我们再看看applyWakeLockFlagsOnReleaseLocked函数:

private void applyWakeLockFlagsOnReleaseLocked(WakeLock wakeLock) {    //仅处理ON_AFTER_RELEASE,同样要求WakeLock的level是与screen有关的    //ON_AFTER_RELEASE并不会立即息屏    if ((wakeLock.mFlags & PowerManager.ON_AFTER_RELEASE) != 0            && isScreenLock(wakeLock)) {        userActivityNoUpdateLocked(SystemClock.uptimeMillis(),                PowerManager.USER_ACTIVITY_EVENT_OTHER,                PowerManager.USER_ACTIVITY_FLAG_NO_CHANGE_LIGHTS,                wakeLock.mOwnerUid);    }}

可以看出applyWakeLockFlagsOnAcquireLocked和applyWakeLockFlagsOnReleaseLocked最后均会调用userActivityNoUpdateLocked函数,只是参数不同。

3.3 userActivityNoUpdateLocked
我们一起来看一下userActivityNoUpdateLocked:

private boolean userActivityNoUpdateLocked(long eventTime, int event, int flags, int uid) {    .............    //过时的事件不需要处理    if (eventTime < mLastSleepTime || eventTime < mLastWakeTime            || !mBootCompleted || !mSystemReady) {        return false;    }    ...........    try {        if (eventTime > mLastInteractivePowerHintTime) {            //调用native加载的动态库的powerHint函数,具体意义不是很清楚            powerHintInternal(POWER_HINT_INTERACTION, 0);            mLastInteractivePowerHintTime = eventTime;        }        //调用BatteryStatsService的noteUserActivity函数,看代码好像是做一些记录        mNotifier.onUserActivity(event, uid);        //根据参数信息修改mDirty的一些变量        .............    } finally {        ........    }}

从以上代码来看,acquire WakeLock将申请信息递交给PMS统一进行处理。
PMS根据WakeLock的level和flag,完成修改一些变量、通知BatteryStatsService等工作后,
最终还是依赖于updatePowerStateLocked函数来进行实际的电源状态更新操作。

PMS类中有很多***NoUpdateLocked()方法,这些方法都有一些共性,就是仅更新状态,不负责具体的执行。因为PMS中具体的执行逻辑都是在updatePowerStateLocked方法中。

上述acquire WakeLock主要的工作大致可以总结为下图:

三、释放WakeLock
当进程完成工作后,需要释放之前申请的WakeLock。我们同样以RIL.java中的操作为例:

private void processResponse (Parcel p) {    int type;    type = p.readInt();    if (type == RESPONSE_UNSOLICITED || type == RESPONSE_UNSOLICITED_ACK_EXP) {        ...........    } else if (type == RESPONSE_SOLICITED || type == RESPONSE_SOLICITED_ACK_EXP) {        //处理请求对应的回复信息        RILRequest rr = processSolicited (p, type);        if (rr != null) {            if (type == RESPONSE_SOLICITED) {                //重点在这里                decrementWakeLock(rr);            }            rr.release();            return;        }    } else if (type == RESPONSE_SOLICITED_ACK) {        ...........    }}

我们跟进decrementWakeLock函数:

private void decrementWakeLock(RILRequest rr) {    synchronized(rr) {        switch(rr.mWakeLockType) {            case FOR_WAKELOCK:                synchronized (mWakeLock) {                    //前面已经提到过,RIL.java多个请求复用同一个WakeLock                    //并且利用mWakeLockCount记录复用的次数                    //这么设计的目的是:RIL发送请求的数量非常多,复用WakeLock可以避免多次构造释放                    //同时减少与PMS之间Binder通信的次数                    if (mWakeLockCount > 1) {                        mWakeLockCount--;                    } else {                        mWakeLockCount = 0;                        //所有请求均得到了处理,调用PowerManager中WakeLock的release函数                        mWakeLock.release();                    }                }                break;            ........        }    }    ........}

现在我们跟进PowerManager中WakeLock定义的release函数:

/*** Releases the wake lock with flags to modify the release behavior.** This method releases your claim to the CPU or screen being on.* The screen may turn off shortly after you release the wake lock, or it may* not if there are other wake locks still held.**/public void release(int flags) {    synchronized (mToken) {        if (!mRefCounted || --mCount == 0) {            mHandler.removeCallbacks(mReleaser);            if (mHeld) {                .......                try {                    //还是会调用到PMS中的函数                    mService.releaseWakeLock(mToken, flags);                } catch (RemoteException e) {                    throw e.rethrowFromSystemServer();                }                mHeld = false;            }        }        ....    }}

最后一起来看看PMS中释放WakeLock的函数:

public void releaseWakeLock(IBinder lock, int flags) {    //参数和权限检查    .............    final long ident = Binder.clearCallingIdentity();    try {        releaseWakeLockInternal(lock, flags);    } finally {        Binder.restoreCallingIdentity(ident);    }}private void releaseWakeLockInternal(IBinder lock, int flags) {    synchronized (mLock) {        //根据Binder代理,从存储的ArrayList中找到对应WakeLock的序号        int index = findWakeLockIndexLocked(lock);        ...........        WakeLock wakeLock = mWakeLocks.get(index);        ...........        //RELEASE_FLAG_WAIT_FOR_NO_PROXIMITY,表示当sensor判断终端离物体较远时,        //才真正释放PROXIMITY_SCREEN_OFF_WAKE_LOCK等级的WakeLock        if ((flags & PowerManager.RELEASE_FLAG_WAIT_FOR_NO_PROXIMITY) != 0) {            mRequestWaitForNegativeProximity = true;        }        //PMS不再关注客户端进程是否死亡        wakeLock.mLock.unlinkToDeath(wakeLock, 0);        removeWakeLockLocked(wakeLock, index);    }}private void removeWakeLockLocked(WakeLock wakeLock, int index) {    mWakeLocks.remove(index);    //通知BatteryStatsService    notifyWakeLockReleasedLocked(wakeLock);    //之前分析过,会做一些记录信息等    applyWakeLockFlagsOnReleaseLocked(wakeLock);    mDirty |= DIRTY_WAKE_LOCKS;    //依然靠updatePowerStateLocked函数更新终端的电源状态    updatePowerStateLocked();}

整个release的过程大致可以总结为下图:

四、总结
通过前面的分析,我们知道了向PMS申请电量的基本用法类似于:

........//1、创建PowerManager pm = (PowerManager)context.getSystemService(Context.POWER_SERVICE);mWakeLock = pm.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK, RILJ_LOG_TAG);......//2、acquiremWakeLock.acquire();.........//3、releasemWakeLock.release();...........

当申请发送到PMS后,PMS将针对WakeLock的level和flag信息进行一些处理。
无论是acquire还是release WakeLock,PMS最终将利用updatePowerStateLocked函数对终端的电源状态进行调整。
我们将单独分析一下PMS核心的updatePowerStateLocked函数。

1 0
原创粉丝点击