Java NIO通俗编程之缓冲区内部细节状态变量position,limit,capacity(二)

来源:互联网 发布:美国控制不了中国网络 编辑:程序博客网 时间:2024/05/06 19:11

一、介绍

我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如果我们使用get()方法从缓冲区获取数据或者使用put()方法把数据写入缓冲区,都会引起缓冲区状态的变化。本节将介绍 NIO 中两个重要的缓冲区组件:状态变量和访问方法 (accessor)。状态变量是前一节中提到的"内部统计机制"的关键。每一个读/写操作都会改变缓冲区的状态。通过记录和跟踪这些变化,缓冲区就可能够内部地管理自己的资源。在从通道读取数据时,数据被放入到缓冲区。在有些情况下,可以将这个缓冲区直接写入另一个通道,但是在一般情况下,您还需要查看数据。这是使用访问方法 get() 来完成的。同样,如果要将原始数据放入缓冲区中,就要使用访问方法 put()。在本节中,您将学习关于 NIO 中的状态变量和访问方法的内容。我们将描述每一个组件,并让您有机会看到它的实际应用。虽然 NIO 的内部统计机制初看起来可能很复杂,但是您很快就会看到大部分的实际工作都已经替您完成了。您可能习惯于通过手工编码进行簿记 ― 即使用字节数组和索引变量,现在它已在 NIO 中内部地处理了。

二、状态变量

在缓冲区中,最重要的状态变量有下面三个,它们一起合作完成对缓冲区内部状态的变化跟踪:
position:指定了下一个将要被写入或者读取的元素索引,它的值由get()/put()方法自动更新,在新创建一个Buffer对象时,position被初始化为0。您可以回想一下,缓冲区实际上就是美化了的数组。在从通道读取时,您将所读取的数据放到底层的数组中。 position 变量跟踪已经写了多少数据。更准确地说,它指定了下一个字节将放到数组的哪一个元素中。因此,如果您从通道中读三个字节到缓冲区中,那么缓冲区的 position将会设置为3,指向数组中第四个元素。同样,在写入通道时,您是从缓冲区中获取数据。 position 值跟踪从缓冲区中获取了多少数据。更准确地说,它指定下一个字节来自数组的哪一个元素。因此如果从缓冲区写了5个字节到通道中,那么缓冲区的 position 将被设置为5,指向数组的第六个元素。position 总是小于或者等于 limit。
limit:指定还有多少数据需要取出(在从缓冲区写入通道时),或者还有多少空间可以放入数据(在从通道读入缓冲区时)。
capacity:指定了可以存储在缓冲区中的最大数据容量,实际上,它指定了底层数组的大小,或者至少是指定了准许我们使用的底层数组的容量。
以上三个属性值之间有一些相对大小的关系:0 <= position <= limit <= capacity。如果我们创建一个新的容量大小为10的ByteBuffer对象,在初始化的时候,position设置为0,limit和 capacity被设置为10,在以后使用ByteBuffer对象过程中,capacity的值不会再发生变化,而其它两个个将会随着使用而变化。三个属性值分别如图所示:

现在我们可以从通道中读取一些数据到缓冲区中,注意从通道读取数据,相当于往缓冲区中写入数据。如果读取4个自己的数据,则此时position的值为4,即下一个将要被写入的字节索引为4,而limit仍然是10,如下图所示:

下一步把读取的数据写入到输出通道中,相当于从缓冲区中读取数据,在此之前,必须调用flip()方法,该方法将会完成两件事情:
1. 把limit设置为当前的position值
2. 把position设置为0
由于position被设置为0,所以可以保证在下一步输出时读取到的是缓冲区中的第一个字节,而limit被设置为当前的position,可以保证读取的数据正好是之前写入到缓冲区中的数据,如下图所示:

现在调用get()方法从缓冲区中读取数据写入到输出通道,这会导致position的增加而limit保持不变,但position不会超过limit的值,所以在读取我们之前写入到缓冲区中的4个自己之后,position和limit的值都为4,如下图所示:

在从缓冲区中读取数据完毕后,limit的值仍然保持在我们调用flip()方法时的值,调用clear()方法能够把所有的状态变化设置为初始化时的值,如下图所示:

最后我们用一段代码来验证这个过程,如下所示:
    import java.io.*;      import java.nio.*;      import java.nio.channels.*;            public class Program {          public static void main(String args[]) throws Exception {              FileInputStream fin = new FileInputStream("d:\\test.txt");              FileChannel fc = fin.getChannel();                    ByteBuffer buffer = ByteBuffer.allocate(10);              output("初始化", buffer);                    fc.read(buffer);              output("调用read()", buffer);                    buffer.flip();              output("调用flip()", buffer);                    while (buffer.remaining() > 0) {                  byte b = buffer.get();                  // System.out.print(((char)b));              }              output("调用get()", buffer);                    buffer.clear();              output("调用clear()", buffer);                    fin.close();          }                public static void output(String step, Buffer buffer) {              System.out.println(step + " : ");              System.out.print("capacity: " + buffer.capacity() + ", ");              System.out.print("position: " + buffer.position() + ", ");              System.out.println("limit: " + buffer.limit());              System.out.println();          }      }  
完成的输出结果为:

三、访问方法

到目前为止,我们只是使用缓冲区将数据从一个通道转移到另一个通道。然而,程序经常需要直接处理数据。例如,您可能需要将用户数据保存到磁盘。在这种情况下,您必须将这些数据直接放入缓冲区,然后用通道将缓冲区写入磁盘。或者,您可能想要从磁盘读取用户数据。在这种情况下,您要将数据从通道读到缓冲区中,然后检查缓冲区中的数据。在本节的最后,我们将详细分析如何使用 ByteBuffer 类的 get() 和 put() 方法直接访问缓冲区中的数据。

get() 方法,ByteBuffer 类中有四个 get() 方法:
1.  byte get();
2.  ByteBuffer get( byte dst[] );
3.  ByteBuffer get( byte dst[], int offset, int length );
4.  byte get( int index );
第一个方法获取单个字节。第二和第三个方法将一组字节读到一个数组中。第四个方法从缓冲区中的特定位置获取字节。那些返回ByteBuffer的方法只是返回调用它们的缓冲区的 this 值。此外,我们认为前三个 get() 方法是相对的,而最后一个方法是绝对的。 相对意味着 get() 操作服从 limit 和 position 值 ― 更明确地说,字节是从当前 position 读取的,而 position 在 get 之后会增加。另一方面,一个 绝对方法会忽略 limit 和 position 值,也不会影响它们。事实上,它完全绕过了缓冲区的统计方法。上面列出的方法对应于 ByteBuffer 类。其他类有等价的 get() 方法,这些方法除了不是处理字节外,其它方面是是完全一样的,它们处理的是与该缓冲区类相适应的类型。

put()方法,ByteBuffer 类中有五个 put() 方法:
1.  ByteBuffer put( byte b );
2.  ByteBuffer put( byte src[] );
3.  ByteBuffer put( byte src[], int offset, int length );
4.  ByteBuffer put( ByteBuffer src );
5.  ByteBuffer put( int index, byte b );
第一个方法 写入(put) 单个字节。第二和第三个方法写入来自一个数组的一组字节。第四个方法将数据从一个给定的源ByteBuffer 写入这个ByteBuffer。第五个方法将字节写入缓冲区中特定的 位置 。那些返回 ByteBuffer 的方法只是返回调用它们的缓冲区的 this 值。与 get() 方法一样,我们将把 put() 方法划分为 相对 或者 绝对 的。前四个方法是相对的,而第五个方法是绝对的。上面显示的方法对应于 ByteBuffer 类。其他类有等价的 put() 方法,这些方法除了不是处理字节之外,其它方面是完全一样的。它们处理的是与该缓冲区类相适应的类型。

类型化的 get() 和 put() 方法:
除了前些小节中描述的 get() 和 put() 方法, ByteBuffer 还有用于读写不同类型的值的其他方法,如下所示,
getByte()、getChar()、getShort()、getInt()、getLong()、getFloat()、getDouble()、putByte()、putChar()、 putShort()、putInt()、putLong()、putFloat()、putDouble()
事实上,这其中的每个方法都有两种类型 ― 一种是相对的,另一种是绝对的。它们对于读取格式化的二进制数据(如图像文件的头部)很有用。
您可以在例子程序 TypesInByteBuffer.java 中看到这些方法的实际应用。
缓冲区的使用:一个内部循环
下面的内部循环概括了使用缓冲区将数据从输入通道拷贝到输出通道的过程。
while (true) {buffer.clear();int r = fcin.read( buffer );if (r==-1) {break;}buffer.flip();fcout.write( buffer );} 
read() 和 write() 调用得到了极大的简化,因为许多工作细节都由缓冲区完成了。 clear() 和 flip() 方法用于让缓冲区在读和写之间切换。



参考文献:
1. Java NIO使用及原理分析(二)

0 0