C++11 并发指南八(综合运用: C++11 多线程下生产者消费者模型详解)

来源:互联网 发布:mysql基本语句 编辑:程序博客网 时间:2024/05/17 01:55

C++11 并发指南九(综合运用: C++11 多线程下生产者消费者模型详解)


前面八章介绍了 C++11 并发编程的基础(抱歉哈,第五章-第八章还在草稿中),本文将综合运用 C++11 中的新的基础设施(主要是多线程、锁、条件变量)来阐述一个经典问题——生产者消费者模型,并给出完整的解决方案。

生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源。本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模型,多生产者-单消费者模型,多生产者-多消费者模型,我会给出四种情况下的 C++11 并发解决方案,如果文中出现了错误或者你对代码有异议,欢迎交流 ;-)。

单生产者-单消费者模型

顾名思义,单生产者-单消费者模型中只有一个生产者和一个消费者,生产者不停地往产品库中放入产品,消费者则从产品库中取走产品,产品库容积有限制,只能容纳一定数目的产品,如果生产者生产产品的速度过快,则需要等待消费者取走产品之后,产品库不为空才能继续往产品库中放置新的产品,相反,如果消费者取走产品的速度过快,则可能面临产品库中没有产品可使用的情况,此时需要等待生产者放入一个产品后,消费者才能继续工作。C++11实现单生产者单消费者模型的代码如下:

复制代码
#include <unistd.h>#include <cstdlib>#include <condition_variable>#include <iostream>#include <mutex>#include <thread>static const int kItemRepositorySize  = 10; // Item buffer size.static const int kItemsToProduce  = 1000;   // How many items we plan to produce.struct ItemRepository {    int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.    size_t read_position; // 消费者读取产品位置.    size_t write_position; // 生产者写入产品位置.    std::mutex mtx; // 互斥量,保护产品缓冲区    std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.    std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.} gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.typedef struct ItemRepository ItemRepository;void ProduceItem(ItemRepository *ir, int item){    std::unique_lock<std::mutex> lock(ir->mtx);    while(((ir->write_position + 1) % kItemRepositorySize)        == ir->read_position) { // item buffer is full, just wait here.        std::cout << "Producer is waiting for an empty slot...\n";        (ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.    }    (ir->item_buffer)[ir->write_position] = item; // 写入产品.    (ir->write_position)++; // 写入位置后移.    if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.        ir->write_position = 0;    (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.    lock.unlock(); // 解锁.}int ConsumeItem(ItemRepository *ir){    int data;    std::unique_lock<std::mutex> lock(ir->mtx);    // item buffer is empty, just wait here.    while(ir->write_position == ir->read_position) {        std::cout << "Consumer is waiting for items...\n";        (ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.    }    data = (ir->item_buffer)[ir->read_position]; // 读取某一产品    (ir->read_position)++; // 读取位置后移    if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.        ir->read_position = 0;    (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.    lock.unlock(); // 解锁.    return data; // 返回产品.}void ProducerTask() // 生产者任务{    for (int i = 1; i <= kItemsToProduce; ++i) {        // sleep(1);        std::cout << "Produce the " << i << "^th item..." << std::endl;        ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.    }}void ConsumerTask() // 消费者任务{    static int cnt = 0;    while(1) {        sleep(1);        int item = ConsumeItem(&gItemRepository); // 消费一个产品.        std::cout << "Consume the " << item << "^th item" << std::endl;        if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.    }}void InitItemRepository(ItemRepository *ir){    ir->write_position = 0; // 初始化产品写入位置.    ir->read_position = 0; // 初始化产品读取位置.}int main(){    InitItemRepository(&gItemRepository);    std::thread producer(ProducerTask); // 创建生产者线程.    std::thread consumer(ConsumerTask); // 创建消费之线程.    producer.join();    consumer.join();}
复制代码

 单生产者-多消费者模型

与单生产者和单消费者模型不同的是,单生产者-多消费者模型中可以允许多个消费者同时从产品库中取走产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护消费者取走产品的计数器,代码如下:

复制代码
#include <unistd.h>#include <cstdlib>#include <condition_variable>#include <iostream>#include <mutex>#include <thread>static const int kItemRepositorySize  = 4; // Item buffer size.static const int kItemsToProduce  = 10;   // How many items we plan to produce.struct ItemRepository {    int item_buffer[kItemRepositorySize];    size_t read_position;    size_t write_position;    size_t item_counter;    std::mutex mtx;    std::mutex item_counter_mtx;    std::condition_variable repo_not_full;    std::condition_variable repo_not_empty;} gItemRepository;typedef struct ItemRepository ItemRepository;void ProduceItem(ItemRepository *ir, int item){    std::unique_lock<std::mutex> lock(ir->mtx);    while(((ir->write_position + 1) % kItemRepositorySize)        == ir->read_position) { // item buffer is full, just wait here.        std::cout << "Producer is waiting for an empty slot...\n";        (ir->repo_not_full).wait(lock);    }    (ir->item_buffer)[ir->write_position] = item;    (ir->write_position)++;    if (ir->write_position == kItemRepositorySize)        ir->write_position = 0;    (ir->repo_not_empty).notify_all();    lock.unlock();}int ConsumeItem(ItemRepository *ir){    int data;    std::unique_lock<std::mutex> lock(ir->mtx);    // item buffer is empty, just wait here.    while(ir->write_position == ir->read_position) {        std::cout << "Consumer is waiting for items...\n";        (ir->repo_not_empty).wait(lock);    }    data = (ir->item_buffer)[ir->read_position];    (ir->read_position)++;    if (ir->read_position >= kItemRepositorySize)        ir->read_position = 0;    (ir->repo_not_full).notify_all();    lock.unlock();    return data;}void ProducerTask(){    for (int i = 1; i <= kItemsToProduce; ++i) {        // sleep(1);        std::cout << "Producer thread " << std::this_thread::get_id()            << " producing the " << i << "^th item..." << std::endl;        ProduceItem(&gItemRepository, i);    }    std::cout << "Producer thread " << std::this_thread::get_id()                << " is exiting..." << std::endl;}void ConsumerTask(){    bool ready_to_exit = false;    while(1) {        sleep(1);        std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);        if (gItemRepository.item_counter < kItemsToProduce) {            int item = ConsumeItem(&gItemRepository);            ++(gItemRepository.item_counter);            std::cout << "Consumer thread " << std::this_thread::get_id()                << " is consuming the " << item << "^th item" << std::endl;        } else ready_to_exit = true;        lock.unlock();        if (ready_to_exit == true) break;    }    std::cout << "Consumer thread " << std::this_thread::get_id()                << " is exiting..." << std::endl;}void InitItemRepository(ItemRepository *ir){    ir->write_position = 0;    ir->read_position = 0;    ir->item_counter = 0;}int main(){    InitItemRepository(&gItemRepository);    std::thread producer(ProducerTask);    std::thread consumer1(ConsumerTask);    std::thread consumer2(ConsumerTask);    std::thread consumer3(ConsumerTask);    std::thread consumer4(ConsumerTask);    producer.join();    consumer1.join();    consumer2.join();    consumer3.join();    consumer4.join();}
复制代码

 多生产者-单消费者模型

与单生产者和单消费者模型不同的是,多生产者-单消费者模型中可以允许多个生产者同时向产品库中放入产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护生产者放入产品的计数器,代码如下:

复制代码
#include <unistd.h>#include <cstdlib>#include <condition_variable>#include <iostream>#include <mutex>#include <thread>static const int kItemRepositorySize  = 4; // Item buffer size.static const int kItemsToProduce  = 10;   // How many items we plan to produce.struct ItemRepository {    int item_buffer[kItemRepositorySize];    size_t read_position;    size_t write_position;    size_t item_counter;    std::mutex mtx;    std::mutex item_counter_mtx;    std::condition_variable repo_not_full;    std::condition_variable repo_not_empty;} gItemRepository;typedef struct ItemRepository ItemRepository;void ProduceItem(ItemRepository *ir, int item){    std::unique_lock<std::mutex> lock(ir->mtx);    while(((ir->write_position + 1) % kItemRepositorySize)        == ir->read_position) { // item buffer is full, just wait here.        std::cout << "Producer is waiting for an empty slot...\n";        (ir->repo_not_full).wait(lock);    }    (ir->item_buffer)[ir->write_position] = item;    (ir->write_position)++;    if (ir->write_position == kItemRepositorySize)        ir->write_position = 0;    (ir->repo_not_empty).notify_all();    lock.unlock();}int ConsumeItem(ItemRepository *ir){    int data;    std::unique_lock<std::mutex> lock(ir->mtx);    // item buffer is empty, just wait here.    while(ir->write_position == ir->read_position) {        std::cout << "Consumer is waiting for items...\n";        (ir->repo_not_empty).wait(lock);    }    data = (ir->item_buffer)[ir->read_position];    (ir->read_position)++;    if (ir->read_position >= kItemRepositorySize)        ir->read_position = 0;    (ir->repo_not_full).notify_all();    lock.unlock();    return data;}void ProducerTask(){    bool ready_to_exit = false;    while(1) {        sleep(1);        std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);        if (gItemRepository.item_counter < kItemsToProduce) {            ++(gItemRepository.item_counter);            ProduceItem(&gItemRepository, gItemRepository.item_counter);            std::cout << "Producer thread " << std::this_thread::get_id()                << " is producing the " << gItemRepository.item_counter                << "^th item" << std::endl;        } else ready_to_exit = true;        lock.unlock();        if (ready_to_exit == true) break;    }    std::cout << "Producer thread " << std::this_thread::get_id()                << " is exiting..." << std::endl;}void ConsumerTask(){    static int item_consumed = 0;    while(1) {        sleep(1);        ++item_consumed;        if (item_consumed <= kItemsToProduce) {            int item = ConsumeItem(&gItemRepository);            std::cout << "Consumer thread " << std::this_thread::get_id()                << " is consuming the " << item << "^th item" << std::endl;        } else break;    }    std::cout << "Consumer thread " << std::this_thread::get_id()                << " is exiting..." << std::endl;}void InitItemRepository(ItemRepository *ir){    ir->write_position = 0;    ir->read_position = 0;    ir->item_counter = 0;}int main(){    InitItemRepository(&gItemRepository);    std::thread producer1(ProducerTask);    std::thread producer2(ProducerTask);    std::thread producer3(ProducerTask);    std::thread producer4(ProducerTask);    std::thread consumer(ConsumerTask);    producer1.join();    producer2.join();    producer3.join();    producer4.join();    consumer.join();}
复制代码

多生产者-多消费者模型

该模型可以说是前面两种模型的综合,程序需要维护两个计数器,分别是生产者已生产产品的数目和消费者已取走产品的数目。另外也需要保护产品库在多个生产者和多个消费者互斥地访问。

代码如下:

复制代码
#include <unistd.h>#include <cstdlib>#include <condition_variable>#include <iostream>#include <mutex>#include <thread>static const int kItemRepositorySize  = 4; // Item buffer size.static const int kItemsToProduce  = 10;   // How many items we plan to produce.struct ItemRepository {    int item_buffer[kItemRepositorySize];    size_t read_position;    size_t write_position;    size_t produced_item_counter;    size_t consumed_item_counter;    std::mutex mtx;    std::mutex produced_item_counter_mtx;    std::mutex consumed_item_counter_mtx;    std::condition_variable repo_not_full;    std::condition_variable repo_not_empty;} gItemRepository;typedef struct ItemRepository ItemRepository;void ProduceItem(ItemRepository *ir, int item){    std::unique_lock<std::mutex> lock(ir->mtx);    while(((ir->write_position + 1) % kItemRepositorySize)        == ir->read_position) { // item buffer is full, just wait here.        std::cout << "Producer is waiting for an empty slot...\n";        (ir->repo_not_full).wait(lock);    }    (ir->item_buffer)[ir->write_position] = item;    (ir->write_position)++;    if (ir->write_position == kItemRepositorySize)        ir->write_position = 0;    (ir->repo_not_empty).notify_all();    lock.unlock();}int ConsumeItem(ItemRepository *ir){    int data;    std::unique_lock<std::mutex> lock(ir->mtx);    // item buffer is empty, just wait here.    while(ir->write_position == ir->read_position) {        std::cout << "Consumer is waiting for items...\n";        (ir->repo_not_empty).wait(lock);    }    data = (ir->item_buffer)[ir->read_position];    (ir->read_position)++;    if (ir->read_position >= kItemRepositorySize)        ir->read_position = 0;    (ir->repo_not_full).notify_all();    lock.unlock();    return data;}void ProducerTask(){    bool ready_to_exit = false;    while(1) {        sleep(1);        std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);        if (gItemRepository.produced_item_counter < kItemsToProduce) {            ++(gItemRepository.produced_item_counter);            ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);            std::cout << "Producer thread " << std::this_thread::get_id()                << " is producing the " << gItemRepository.produced_item_counter                << "^th item" << std::endl;        } else ready_to_exit = true;        lock.unlock();        if (ready_to_exit == true) break;    }    std::cout << "Producer thread " << std::this_thread::get_id()                << " is exiting..." << std::endl;}void ConsumerTask(){    bool ready_to_exit = false;    while(1) {        sleep(1);        std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);        if (gItemRepository.consumed_item_counter < kItemsToProduce) {            int item = ConsumeItem(&gItemRepository);            ++(gItemRepository.consumed_item_counter);            std::cout << "Consumer thread " << std::this_thread::get_id()                << " is consuming the " << item << "^th item" << std::endl;        } else ready_to_exit = true;        lock.unlock();        if (ready_to_exit == true) break;    }    std::cout << "Consumer thread " << std::this_thread::get_id()                << " is exiting..." << std::endl;}void InitItemRepository(ItemRepository *ir){    ir->write_position = 0;    ir->read_position = 0;    ir->produced_item_counter = 0;    ir->consumed_item_counter = 0;}int main(){    InitItemRepository(&gItemRepository);    std::thread producer1(ProducerTask);    std::thread producer2(ProducerTask);    std::thread producer3(ProducerTask);    std::thread producer4(ProducerTask);    std::thread consumer1(ConsumerTask);    std::thread consumer2(ConsumerTask);    std::thread consumer3(ConsumerTask);    std::thread consumer4(ConsumerTask);    producer1.join();    producer2.join();    producer3.join();    producer4.join();    consumer1.join();    consumer2.join();    consumer3.join();    consumer4.join();}
复制代码

 另外,所有例子的代码(包括前面一些指南的代码均放在github上),希望对大家学习 C++11 多线程并发有所帮助。

0 0
原创粉丝点击