Spark Streaming性能优化: 如何在生成环境下应对流数据峰值巨变

来源:互联网 发布:mac能玩qq堂吗 编辑:程序博客网 时间:2024/04/28 00:45

1、为什么引入Backpressure

默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔。这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置间隔内不能完全处理当前接收速率接收的数据。如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟)。Spark 1.5以前版本,用户如果要限制Receiver的数据接收速率,可以通过设置静态配制参数“spark.streaming.receiver.maxRate
”的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming 从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力。
2、Backpressure
Spark Streaming Backpressure: 根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性“spark.streaming.backpressure.enabled
”来控制是否启用backpressure机制,默认值false,即不启用。
2.1 Streaming架构如下图所示(详见Streaming数据接收过程文档和Streaming 源码解析)



2.2 BackPressure执行过程如下图所示:
  在原架构的基础上加上一个新的组件RateController,这个组件负责监听“OnBatchCompleted”事件,然后从中抽取processingDelay 及schedulingDelay信息. Estimator依据这些信息估算出最大处理速度(rate),最后由基于Receiver的Input Stream将rate通过ReceiverTracker与ReceiverSupervisorImpl转发给BlockGenerator(继承自RateLimiter).


3、BackPressure 源码解析
3.1 RateController类体系
RatenController 继承自StreamingListener. 用于处理BatchCompleted事件。核心代码为:

** * A StreamingListener that receives batch completion     updates, and maintains * an estimate of the speed at which this stream should ingest messages, * given an estimate computation from a `RateEstimator` */private[streaming] abstract class RateController(val streamUID: Int, rateEstimator: RateEstimator)extends StreamingListener with Serializable {  /**   * Compute the new rate limit and publish it asynchronously.   */  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =Future[Unit] {  val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)  newRate.foreach { s =>    rateLimit.set(s.toLong)    publish(getLatestRate())  }}def getLatestRate(): Long = rateLimit.get()override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {val elements = batchCompleted.batchInfo.streamIdToInputInfofor {  processingEnd <- batchCompleted.batchInfo.processingEndTime  workDelay <- batchCompleted.batchInfo.processingDelay  waitDelay <- batchCompleted.batchInfo.schedulingDelay  elems <- elements.get(streamUID).map(_.numRecords)} computeAndPublish(processingEnd, elems, workDelay, waitDelay)}}

3.2 RateController的注册
JobScheduler启动时会抽取在DStreamGraph中注册的所有InputDstream中的rateController,并向ListenerBus注册监听. 此部分代码如下:

def start(): Unit = synchronized {   if (eventLoop != null) return // scheduler has already been started   logDebug("Starting JobScheduler")   eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {   override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)   override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start() // attach rate controllers of input streams to receive batch completion updates for {   inputDStream <- ssc.graph.getInputStreams   rateController <- inputDStream.rateController } ssc.addStreamingListener(rateController)</span> listenerBus.start() receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) receiverTracker.start() jobGenerator.start() logInfo("Started JobScheduler")}

3.3 BackPressure执行过程分析
BackPressure 执行过程分为BatchCompleted事件触发时机和事件处理两个过程
3.3.1 BatchCompleted触发过程
对BatchedCompleted的分析,应该从JobGenerator入手,因为BatchedCompleted是批次处理结束的标志,也就是JobGenerator产生的作业执行完成时触发的,因此进行作业执行分析。
Streaming 应用中JobGenerator每个Batch Interval都会为应用中的每个Output Stream建立一个Job, 该批次中的所有Job组成一个Job Set.使用JobScheduler的submitJobSet进行批量Job提交。此部分代码结构如下所示

 /** Generate jobs and perform checkpoint for the given `time`.  */private def generateJobs(time: Time) {  // Set the SparkEnv in this thread, so that job generation code can access the environment  // Example: BlockRDDs are created in this thread, and it needs to access BlockManager  // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.  SparkEnv.set(ssc.env)  // Checkpoint all RDDs marked for checkpointing to ensure their lineages are  // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).  ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")  Try {    jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch    graph.generateJobs(time) // generate jobs using allocated block  } match {    case Success(jobs) =>      val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))    case Failure(e) =>      jobScheduler.reportError("Error generating jobs for time " + time, e)}eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))}

其中,sumitJobSet会创建固定数量的后台线程(具体由“spark.streaming.concurrentJobs”指定),去处理Job Set中的Job. 具体实现逻辑为:

def submitJobSet(jobSet: JobSet) {  if (jobSet.jobs.isEmpty) {    logInfo("No jobs added for time " + jobSet.time)  } else {    listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))    jobSets.put(jobSet.time, jobSet)    jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))    logInfo("Added jobs for time " + jobSet.time)  }}

其中JobHandler用于执行Job及处理Job执行结果信息。当Job执行完成时会产生JobCompleted事件. JobHandler的具体逻辑如下面代码所示:
+ View Code

  当Job执行完成时,向eventLoop发送JobCompleted事件。EventLoop事件处理器接到JobCompleted事件后将调用handleJobCompletion 来处理Job完成事件。handleJobCompletion使用Job执行信息创建StreamingListenerBatchCompleted事件并通过StreamingListenerBus向监听器发送。实现如下:

private def handleJobCompletion(job: Job, completedTime: Long) {   val jobSet = jobSets.get(job.time)   jobSet.handleJobCompletion(job)   job.setEndTime(completedTime)   listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))   logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)   if (jobSet.hasCompleted) {     jobSets.remove(jobSet.time)     jobGenerator.onBatchCompletion(jobSet.time)     logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(     jobSet.totalDelay / 1000.0, jobSet.time.toString,     jobSet.processingDelay / 1000.0   )) listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo)) } job.result match {   case Failure(e) =>       reportError("Error running job " + job, e)   case _ => }}

3.3.2、BatchCompleted事件处理过程
StreamingListenerBus将事件转交给具体的StreamingListener,因此BatchCompleted将交由RateController进行处理。RateController接到BatchCompleted事件后将调用onBatchCompleted对事件进行处理。

override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {  val elements = batchCompleted.batchInfo.streamIdToInputInfo  for {    processingEnd <- batchCompleted.batchInfo.processingEndTime    workDelay <- batchCompleted.batchInfo.processingDelay    waitDelay <- batchCompleted.batchInfo.schedulingDelay    elems <- elements.get(streamUID).map(_.numRecords)  } computeAndPublish(processingEnd, elems, workDelay, waitDelay)}

  onBatchCompleted会从完成的任务中抽取任务的执行延迟和调度延迟,然后用这两个参数用RateEstimator(目前存在唯一实现PIDRateEstimator,proportional-integral-derivative (PID) controller,PID控制器)估算出新的rate并发布。代码如下:

/**   * Compute the new rate limit and publish it asynchronously.   */  private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =Future[Unit] {  val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)  newRate.foreach { s =>    rateLimit.set(s.toLong)    publish(getLatestRate())  }}

其中publish()由RateController的子类ReceiverRateController来定义。具体逻辑如下(ReceiverInputDStream中定义):

/**   * A RateController that sends the new rate to receivers, via the receiver tracker.   */ private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)  extends RateController(id, estimator) {  override def publish(rate: Long): Unit =    ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)}

publish的功能为新生成的rate 借助ReceiverTracker进行转发。ReceiverTracker将rate包装成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint

/** Update a receiver's maximum ingestion rate */def sendRateUpdate(streamUID: Int, newRate: Long):   Unit = synchronized {  if (isTrackerStarted) {    endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))  }}

ReceiverTrackerEndpoint接到消息后,其将会从receiverTrackingInfos列表中获取Receiver注册时使用的endpoint(实为ReceiverSupervisorImpl),再将rate包装成UpdateLimit发送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子类),来计算出一个固定的令牌间隔。
+ View Code

其中RateLimiter的updateRate实现如下:

/**  * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by  * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.  *  * @param newRate A new rate in events per second. It has no effect if it's 0 or negative.  */ private[receiver] def updateRate(newRate: Long): Unit =   if (newRate > 0) {   if (maxRateLimit > 0) {     rateLimiter.setRate(newRate.min(maxRateLimit))   } else {     rateLimiter.setRate(newRate)   } }

setRate的实现 如下:

public final void setRate(double permitsPerSecond) {  Preconditions.checkArgument(permitsPerSecond > 0.0    && !Double.isNaN(permitsPerSecond), "rate must be positive");  synchronized (mutex) {    resync(readSafeMicros());    double stableIntervalMicros = TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;  //固定间隔    this.stableIntervalMicros = stableIntervalMicros;    doSetRate(permitsPerSecond, stableIntervalMicros);  }}

到此,backpressure反压机制调整rate结束。

4.流量控制点
  当Receiver开始接收数据时,会通过supervisor.pushSingle()方法将接收的数据存入currentBuffer等待BlockGenerator定时将数据取走,包装成block. 在将数据存放入currentBuffer之时,要获取许可(令牌)。如果获取到许可就可以将数据存入buffer, 否则将被阻塞,进而阻塞Receiver从数据源拉取数据。

  /**   * Push a single data item into the buffer.   */  def addData(data: Any): Unit = {      if (state == Active) {         waitToPush()  //获取令牌        synchronized {          if (state == Active) {            currentBuffer += data          } else {            throw new SparkException(        "Cannot add data as BlockGenerator has not been started or has been stopped")          }        }      } else {        throw new SparkException(    "Cannot add data as BlockGenerator has not been started or has been stopped")}

}

其令牌投放采用令牌桶机制进行, 原理如下图所示:



  令牌桶机制: 大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。当进行某操作时需要令牌时会从令牌桶中取出相应的令牌数,如果获取到则继续操作,否则阻塞。用完之后不用放回。
  Streaming 数据流被Receiver接收后,按行解析后存入iterator中。然后逐个存入Buffer,在存入buffer时会先获取token,如果没有token存在,则阻塞;如果获取到则将数据存入buffer. 然后等价后续生成block操作。



文/曹振华(简书作者)
原文链接:http://www.jianshu.com/p/87e2d66d92bb
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
0 0
原创粉丝点击