Scala课堂-5-类型和多态类型

来源:互联网 发布:java工厂模式概念 编辑:程序博客网 时间:2024/05/22 14:17

什么是静态类型?它们为什么有用?

按 Pierce 的话讲:“类型系统是一个语法方法,它们根据程序计算的值的种类对程序短语进行分类,通过分类结果错误行为进行自动检查。” 类型允许你表示函数的定义域和值域。

例如,从数学角度看这个定义: f: R -> N
它告诉我们函数“f”是从实数集到自然数集的映射。 抽象地说,这就是 具体 类型的准确定义。类型系统给我们提供了一些更强大的方式来表达这些集合。
鉴于这些注释,编译器可以 静态地 (在编译时)验证程序是 合理 的。也就是说,如果值(在运行时)不符合程序规定的约束,编译将失败。 一般说来,类型检查只能保证 不合理 的程序不能编译通过。它不能保证每一个合理的程序都 可以 编译通过。
随着类型系统表达能力的提高,我们可以生产更可靠的代码,因为它能够在我们运行程序之前验证程序的不变性(当然是发现类型本身的模型 bug!)。学术界一直很努力地提高类型系统的表现力,包括值依赖(value-dependent)类型!
需要注意的是,所有的类型信息会在编译时被删去,因为它已不再需要。这就是所谓的擦除。

Scala 中的类型
Scala 强大的类型系统拥有非常丰富的表现力。其主要特性有: 参数化多态性 粗略地说,就是泛型编程 (局部)类型推断 粗略地说,就是为什么你不需要这样写代码 val i: Int = 12: Int 存在量化 粗略地说,为一些没有名称的类型进行定义 视窗 我们将下周学习这些;粗略地说,就是将一种类型的值“强制转换”为另一种类型

参数化多态性
多态性是在不影响静态类型丰富性的前提下,用来(给不同类型的值)编写通用代码的。 例如,如果没有参数化多态性,一个通用的列表数据结构总是看起来像这样(事实上,它看起来很像使用泛型前的 Java):

scala> 2 :: 1 :: "bar" :: "foo" :: Nilres5: List[Any] = List(2, 1, bar, foo)

现在我们无法恢复其中成员的任何类型信息。

scala> res0.headres2: Any = 2

所以我们的应用程序将会退化为一系列类型转换(“asInstanceOf[]”),并且会缺乏类型安全的保障(因为这些都是动态的)。 多态性是通过指定 类型变量 实现的。

scala>  def drop1[A](l: List[A]) = l.taildrop1: [A](l: List[A])List[A]scala>  drop1(List(1,2,3))res3: List[Int] = List(2, 3)

Scala 有秩1多态性
粗略地说,这意味着在 Scala 中,有一些你想表达的类型概念“过于泛化”以至于编译器无法理解。假设你有一个函数

def toList[A](a: A) = List(a)

你希望继续泛型地使用它:

def foo[A, B](f: A => List[A], b: B) = f(b)<console>:7: error: type mismatch; found   : b.type (with underlying type B) required: A       def foo[A, B](f: A => List[A], b: B) = f(b)

这段代码不能编译,因为所有的类型变量只有在调用上下文中才被固定。即使你“钉住”了类型 B:

scala> def foo[A](f: A => List[A], i: Int) = f(i)<console>:7: error: type mismatch; found   : i.type (with underlying type Int) required: A       def foo[A](f: A => List[A], i: Int) = f(i)

类型推断
静态类型的一个传统反对意见是,它有大量的语法开销。Scala 通过 类型推断 来缓解这个问题。 在函数式编程语言中,类型推断的经典方法是 Hindley Milner 算法,它最早是实现在 ML 中的。 Scala 类型推断系统的实现稍有不同,但本质类似:推断约束,并试图统一类型。

在 Scala 中所有类型推断是 局部的 。Scala 一次分析一个表达式。例如:

scala>  def id[T](x: T) = xid: [T](x: T)Tscala>  val x = id(322)x: Int = 322scala>  val x = id("hey")x: String = heyscala>  val x = id(Array(1,2,3,4))x: Array[Int] = Array(1, 2, 3, 4)

类型信息都保存完好,Scala 编译器为我们进行了类型推断。请注意我们并不需要明确指定返回类型。

变性 Variance
Scala 的类型系统必须同时解释类层次和多态性。类层次结构可以表达子类关系。在混合OO和多态性时,一个核心问题是:如果 T’ 是 T 一个子类, Container[T’] 应该被看做是 Container[T] 的子类吗?变性(Variance)注解允许你表达类层次结构和多态类型之间的关系:

含义 Scala 标记
协变covariant C[T’]是 C[T] 的子类 [+T]
逆变contravariant C[T] 是 C[T’]的子类 [-T]
不变invariant C[T] 和 C[T’]无关 [T]
子类型关系的真正含义:对一个给定的类型 T,如果 T’ 是其子类型,你能替换它吗?

scala> class Covariant[+A]defined class Covariantscala> val cv: Covariant[AnyRef] = new Covariant[String]cv: Covariant[AnyRef] = Covariant@5d0c0c59scala> val cv: Covariant[String] = new Covariant[AnyRef]<console>:8: error: type mismatch; found   : Covariant[AnyRef] required: Covariant[String]       val cv: Covariant[String] = new Covariant[AnyRef]scala> class Contravariant[-A]defined class Contravariantscala> val cv: Contravariant[String] = new Contravariant[AnyRef]cv: Contravariant[String] = Contravariant@40738293scala>  val fail: Contravariant[AnyRef] = new Contravariant[String]<console>:8: error: type mismatch; found   : Contravariant[String] required: Contravariant[AnyRef]        val fail: Contravariant[AnyRef] = new Contravariant[String]

逆变似乎很奇怪。什么时候才会用到它呢?令人惊讶的是,函数特质的定义就使用了它!

trait Function1 [-T1, +R] extends AnyRef

如果你仔细从替换的角度思考一下,会发现它是非常合理的。让我们先定义一个简单的类层次结构:

scala>  class Animal { val sound = "rustle" }defined class Animalscala>  class Bird extends Animal { override val sound = "call" }defined class Birdscala>  class Chicken extends Bird { override val sound = "cluck" }

假设你需要一个以 Bird 为参数的函数:

val getTweet: (Bird => String) = // TODO

标准动物库有一个函数满足了你的需求,但它的参数是 Animal。在大多数情况下,如果你说“我需要一个,我有一个的子类”是可以的。但是,在函数参数这里是逆变的。如果你需要一个参数为 Bird 的函数,并且指向一个参数为 Chicken 的函数,那么给它传入一个 Duck 时就会出错。但指向一个参数为 Animal 的函数就是可以的:

scala>  val getTweet: (Bird => String) = ((a: Animal) => a.sound )getTweet: Bird => String = <function1>

函数的返回值类型是协变的。如果你需要一个返回 Bird 的函数,但指向的函数返回类型是 Chicken,这当然是可以的。

scala>  val hatch: (() => Bird) = (() => new Chicken )hatch: () => Bird = <function0>

边界
Scala 允许你通过 边界 来限制多态变量。这些边界表达了子类型关系

scala>  def cacophony[T](things: Seq[T]) = things map (_.sound)<console>:7: error: value sound is not a member of type parameter T        def cacophony[T](things: Seq[T]) = things map (_.sound)                                                         ^scala>  def biophony[T <: Animal](things: Seq[T]) = things map (_.sound)biophony: [T <: Animal](things: Seq[T])Seq[String]scala>  biophony(Seq(new Chicken, new Bird))res4: Seq[String] = List(cluck, call)

类型下界也是支持的,这让逆变和巧妙协变的引入得心应手。 List[+T] 是协变的;一个 Bird 的列表也是 Animal 的列表。List 定义一个操作::(elem T)返回一个加入了 elem 的新的 List。新的 List 和原来的列表具有相同的类型:

scala> val flock = List(new Bird, new Bird)flock: List[Bird] = List(Bird@7e1ec70e, Bird@169ea8d2)scala> new Chicken :: flockres53: List[Bird] = List(Chicken@56fbda05, Bird@7e1ec70e, Bird@169ea8d2)

List 同样 定义了::[B >: T](x: B) 来返回一个 List[B] 。请注意 B >: T,这指明了类型 B 为类型T的超类。这个方法让我们能够做正确地处理在一个 List[Bird] 前面加一个 Animal 的操作:

scala> new Animal :: flockres6: List[Animal] = List(Animal@75be93a7, Bird@5ab69598, Bird@9175caf)

注意返回类型是 Animal。

量化
有时候,你并不关心是否能够命名一个类型变量,例如:

scala>  def count[A](l: List[A]) = l.sizecount: [A](l: List[A])Int

这时你可以使用“通配符”取而代之:

scala>  def count(l: List[_]) = l.sizecount: (l: List[_])Int

这相当于是下面代码的简写:

scala>  def count(l: List[T forSome { type T }]) = l.sizecount: (l: List[T forSome { type T }])Int

注意量化会的结果会变得非常难以理解:

scala> def drop1(l: List[_]) = l.taildrop1: (l: List[_])List[Any]

突然,我们失去了类型信息!让我们细化代码看看发生了什么:

scala> def drop1(l: List[T forSome { type T }]) = l.taildrop1: (l: List[T forSome { type T }])List[T forSome { type T }]

我们不能使用T因为类型不允许这样做。 你也可以为通配符类型变量应用边界:

scala>  def hashcodes(l: Seq[_ <: AnyRef]) = l map (_.hashCode)hashcodes: (l: Seq[_ <: AnyRef])Seq[Int]scala>  hashcodes(Seq(1,2,3))<console>:9: error: the result type of an implicit conversion must be more specific than AnyRef               hashcodes(Seq(1,2,3))                             ^<console>:9: error: the result type of an implicit conversion must be more specific than AnyRef               hashcodes(Seq(1,2,3))                               ^<console>:9: error: the result type of an implicit conversion must be more specific than AnyRef               hashcodes(Seq(1,2,3))                                 ^scala>  hashcodes(Seq("one", "two", "three"))res8: Seq[Int] = List(110182, 115276, 110339486)
0 0
原创粉丝点击