Volley基本使用及源码解析

来源:互联网 发布:jquery ajax json 编辑:程序博客网 时间:2024/06/05 11:44

相信大部分开发者在android开发过程中 都使用过volley这个jar包,下面我们就通过这个jar包的源码,对这个jar包进行深度解析,以便我们在使用这个jar包的情况下能够很好的了解这个jar包的利弊。

volley 基本用法

对于volley的基本用法相信很多开发人员都知道,下面我们以String的请求来讲解volley的基本用法

StringRequest的基本用法

1:创建requestQueue对象
2:创建StringRequest
3:将request添加到requestQueue中

GET 用法

下面是具体实例代码:

//1:创建requestQueue对象RequestQueue requestQueue = Volley.newRequestQueue(this);        //2:创建StringRequest        StringRequest stringRequest = new StringRequest(GETURL, new Response.Listener<String>() {            @Override            public void onResponse(String response) {                Log.d("TAG","requestSuccess:"+response);            }        }, new Response.ErrorListener() {            @Override            public void onErrorResponse(VolleyError error) {                Log.d("TAG","requestError:"+error.getMessage());            }        });        //将request添加到requestQueue中        requestQueue.add(stringRequest);

程序运行之后我们可以看到其返回的内容:

这里写图片描述

通过日志的打印我们可以看到整个请求是成功的。

POST

上述请求是GET请求下面我们来看一下post请求是如何完成的
其实Post方法与get方法的基本步骤是一致的,只不过在构造 StringRequest方法中多穿入了一个参数,该参数指明该次的请求模式是get还是post。

//1:创建requestQueue对象        RequestQueue requestQueue = Volley.newRequestQueue(this);        //2:创建StringRequest        StringRequest stringRequest = new StringRequest(Request.Method.POST,GETURL, new Response.Listener<String>() {            @Override            public void onResponse(String response) {                Log.d("TAG","requestSuccess:"+response);            }        }, new Response.ErrorListener() {            @Override            public void onErrorResponse(VolleyError error) {                Log.d("TAG","requestError:"+error.getMessage());            }        }        )        {            @Override            protected Map<String, String> getParams() throws AuthFailureError {                return super.getParams();            }        };        //将request添加到requestQueue中        requestQueue.add(stringRequest);

细心的读者看到了在post请求中,我们同时重写了getParams(),实质上对于我们来说完全可以理解,因为post请求是不允许带有参数的,所以重写getParams()方法,在这里设置POST参数,这就是我们重写getParams() 方法的意义。

运行结果:
这里写图片描述

到这里我行各位读者对于volley 中使用StringRequest的请求,无论是get方式还是post方法都有初步的了解了。

JsonRequest基本用法

上述我们讲解了StringRequest的基本用法,接下来我们讲解Volley 中JsonRequest的基本用法。

JsonRequest的基本用法与StringRequest的用法基本一致,

1:创建requestQueue对象
2:创建JsonRequest
3:将request添加到requestQueue中

下面是具体实现代码:

//1:创建requestQueue对象        RequestQueue requestQueue = Volley.newRequestQueue(this);        //2:创建JsonObjectRequest        JsonObjectRequest jsonObjectRequest = new JsonObjectRequest(JSONURL, null, new Response.Listener<JSONObject>() {            @Override            public void onResponse(JSONObject response) {                Log.d("TAG","requestSuccess:"+response.toString());            }        }, new Response.ErrorListener() {            @Override            public void onErrorResponse(VolleyError error) {                Log.d("TAG","requestError:"+error.getMessage());            }        }){            @Override            protected Map<String, String> getParams() throws AuthFailureError {                //  创建json串                return super.getParams();            }        };        //将request添加到requestQueue中        requestQueue.add(jsonObjectRequest);

注:JsonObjectRequest请求方式根据 参数2进行区别的 jsobObject 第二个参数需要传入的形式为Json形式,如果传入Json,此时JsonRequest请求方式为post请求,如果传入为null 则JsonRequest请求方式为get

上述这点我们可以通过源代码看到:

 public JsonObjectRequest(String url, JSONObject jsonRequest, Listener<JSONObject> listener,            ErrorListener errorListener) {        this(jsonRequest == null ? Method.GET : Method.POST, url, jsonRequest,                listener, errorListener);    }

程序运行我们可以看到:
这里写图片描述

至此相信读者对volley中JsonRequest的请求有一定的了解了。

Volley 加载 image

ImageRequest 的基本使用

在volley使用过程中,我们会经常用到网络图片的加载,针对图片加载Volley提供了 ImageRequest加载方式。

实质上ImageRequest方式加载图片与StringRequest以及JsonRequest方式是一样的;

1:创建requestQueue对象
2:创建ImageRequest
3:将request添加到requestQueue中

下面我们来介绍ImageRequest是如何加载图片的;

具体实现代码

RequestQueue requestQueue = Volley.newRequestQueue(this);        //String url, Response.Listener<Bitmap> listener, int maxWidth, int maxHeight, Config decodeConfig, Response.ErrorListener errorListener        /**         *0, // 图片的宽度,如果是0,就不会进行压缩,否则会根据数值进行压缩         *0, // 图片的高度,如果是0,就不进行压缩,否则会压缩         *Config.ARGB_8888, // 图片的颜色属性         */        ImageRequest imageRequest = new ImageRequest(IMAGEUEL, new Response.Listener<Bitmap>() {            @Override            public void onResponse(Bitmap response) {                Log.d("TAG","requestSuccess:"+response.toString());            }        }, 0, 0, Bitmap.Config.ARGB_8888, new Response.ErrorListener() {            @Override            public void onErrorResponse(VolleyError error) {                Log.d("TAG","requestError:"+error.getMessage());            }        });        requestQueue.add(imageRequest);

运行程序之后我们可以看到

这里写图片描述

在这里我们可以通过源码看到ImageRequest加载方式是get方式;

public ImageRequest(String url, Response.Listener<Bitmap> listener, int maxWidth, int maxHeight,            ScaleType scaleType, Config decodeConfig, Response.ErrorListener errorListener) {        super(Method.GET, url, errorListener);        ...    }
ImageLoader图片加载方式

如果你觉得ImageRequest已经非常好用了,那我只能说你太容易满足了 ^_^。实际上,Volley在请求网络图片方面可以做到的还远远不止这些,而ImageLoader就是一个很好的例子。ImageLoader也可以用于加载网络上的图片,并且它的内部也是使用ImageRequest来实现的,不过ImageLoader明显要比ImageRequest更加高效,因为它不仅可以帮我们对图片进行缓存,还可以过滤掉重复的链接,避免重复发送请求。

下面我们来看一下ImageLoader是如何实现图片加载的。

大致可以分为以下四步:
1. 创建一个RequestQueue对象。
2. 创建一个ImageLoader对象。
3. 获取一个ImageListener对象。
4. 调用ImageLoader的get()方法加载网络上的图片。

具体实现代码:

// 创建一个RequestQueue对象。        RequestQueue requestQueue = Volley.newRequestQueue(this);        //创建一个ImageLoader对象        ImageLoader imageLoader = new ImageLoader(requestQueue, new ImageLoader.ImageCache() {            @Override            public Bitmap getBitmap(String url) {                return null;            }            @Override            public void putBitmap(String url, Bitmap bitmap) {            }        });        //获取一个ImageListener对象。        /**         * 1:图片显示view         * 2:加载时默认图片         * 3:加载失败时默认图片         */        ImageLoader.ImageListener imageListener = ImageLoader.getImageListener(imageView,                R.drawable.ic_launcher, R.drawable.ic_launcher);        //调用ImageLoader的get()方法加载网络上的图片        /**         *  200: 设置网络加载之后 图片允许的最大宽         *  200: 设置网络加载之后 图片允许的最大高         */        imageLoader.get(IMAGEUEL, imageListener,200,200);

程序运行结果我们可以看到:

这里写图片描述

到这里我们对Volley中的基本使用已经介绍完成,下面我们将对Volley源码进行详细解析。

Volley 源码解析

上述文章中已经介绍来Volley各种Request的使用,下面我们根据Volley源码来分析内部是如何具体实现的。

在 volley官网有一张图其实是很明确的表示了volley 的整个请求流程,该图如下图所示;

这里写图片描述

下面我们就根据上图流程来介绍volley的整个请求流程。

使用Volley的第一步,首先要调用Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示

public static RequestQueue newRequestQueue(Context context) {        return newRequestQueue(context, null);    }

可以看到内部实质上是直接调用了 newRequestQueue(…)方法

下面我们来看 newRequestQueue 内部主要做了什么;

public static RequestQueue newRequestQueue(Context context, HttpStack stack) {        File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);        String userAgent = "volley/0";        try {            String packageName = context.getPackageName();            PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);            userAgent = packageName + "/" + info.versionCode;        } catch (NameNotFoundException e) {        }        if (stack == null) {            if (Build.VERSION.SDK_INT >= 9) {                stack = new HurlStack();            } else {                // Prior to Gingerbread, HttpUrlConnection was unreliable.                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html                stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));            }        }        Network network = new BasicNetwork(stack);        RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);        queue.start();        return queue;    }

首先我们在代码中看到 如果stack为null 则会根据sdk不同的版本去创建对应的stack对象,创建好stack对象之后,紧接着创建一个Network 它是用于根据传入的HttpStack对象来处理网络请求的,
之后创建一个RequestQueue 对象,创建好之后,调用start();方法,最后将 RequestQueue 对象返回出去,到这里我们 newRequestQueue 方法执行完成了,同时返回了一个RequestQueue对象。

那么RequestQueue的start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧;

 public void start() {        stop();  // Make sure any currently running dispatchers are stopped.        // Create the cache dispatcher and start it.        mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);        mCacheDispatcher.start();        // Create network dispatchers (and corresponding threads) up to the pool size.        for (int i = 0; i < mDispatchers.length; i++) {            NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,                    mCache, mDelivery);            mDispatchers[i] = networkDispatcher;            networkDispatcher.start();        }    }

在这段代码中我们看到 内部首选创建一个CacheDispatcher 对象,同时在for循环中创建多个 NetworkDispatcher 对象,然后这些对象,调用start方法。而 CacheDispatcher、NetworkDispatcher这两个对象通过源码我们可以看到实质上都是Thread对象。

public class CacheDispatcher extends Thread {}
public class NetworkDispatcher extends Thread{}

而在RequestQueue构造函数中我们可以看到

/** Number of network request dispatcher threads to start. */    private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4; public RequestQueue(Cache cache, Network network) {        this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);    }

通过这个我们可以知道在RequestQueue对象创建时,同时会创建5个线程,分别为1个缓存线程,4个网络线程。

在得到RequestQueue对象,我们构建各种request对象,然后调用add方法将 request添加到 RequestQueue对象中。

下面我们只需要看一下add方法内是如何实现的;

 public <T> Request<T> add(Request<T> request) {        // Tag the request as belonging to this queue and add it to the set of current requests.        request.setRequestQueue(this);        synchronized (mCurrentRequests) {            mCurrentRequests.add(request);        }        // Process requests in the order they are added.        request.setSequence(getSequenceNumber());        request.addMarker("add-to-queue");        // If the request is uncacheable, skip the cache queue and go straight to the network.        if (!request.shouldCache()) {            mNetworkQueue.add(request);            return request;        }        // Insert request into stage if there's already a request with the same cache key in flight.        synchronized (mWaitingRequests) {            String cacheKey = request.getCacheKey();            if (mWaitingRequests.containsKey(cacheKey)) {                // There is already a request in flight. Queue up.                Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);                if (stagedRequests == null) {                    stagedRequests = new LinkedList<Request<?>>();                }                stagedRequests.add(request);                mWaitingRequests.put(cacheKey, stagedRequests);                if (VolleyLog.DEBUG) {                    VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);                }            } else {                // Insert 'null' queue for this cacheKey, indicating there is now a request in                // flight.                mWaitingRequests.put(cacheKey, null);                mCacheQueue.add(request);            }            return request;        }    }

add 方法内部代码比较长,我们只需要关注内部比较重点的代码即可,

if (!request.shouldCache()) {            mNetworkQueue.add(request);            return request;        }

在这段代码中我们可以看到首先判断 requset是否可以缓存,如果为false,则 将该request 直接添加网络队列中。

否则

                mCacheQueue.add(request);

将request 添加到 缓存队列中。

在默认情况下是将request添加到缓存队列中;我们可以通过

public final Request<?> setShouldCache(boolean shouldCache) {        mShouldCache = shouldCache;        return this;    }

方法来设置该请求是否可以添加到缓存队列中。

在add 方法之后,每条请求添加到缓存队列中,于是后台等待的无论是缓存线程还是网络线程开始运行起来,下面我们分别来看一下CacheDispatcher中的run()方法以及NetworkDispatcher 的run() 方法。

先看一下 CacheDispatcher中的run()方法;

@Override    public void run() {        if (DEBUG) VolleyLog.v("start new dispatcher");        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);        // Make a blocking call to initialize the cache.        mCache.initialize();        while (true) {            try {                // Get a request from the cache triage queue, blocking until                // at least one is available.                final Request<?> request = mCacheQueue.take();                request.addMarker("cache-queue-take");                // If the request has been canceled, don't bother dispatching it.                if (request.isCanceled()) {                    request.finish("cache-discard-canceled");                    continue;                }                // Attempt to retrieve this item from cache.                Cache.Entry entry = mCache.get(request.getCacheKey());                if (entry == null) {                    request.addMarker("cache-miss");                    // Cache miss; send off to the network dispatcher.                    mNetworkQueue.put(request);                    continue;                }                // If it is completely expired, just send it to the network.                if (entry.isExpired()) {                    request.addMarker("cache-hit-expired");                    request.setCacheEntry(entry);                    mNetworkQueue.put(request);                    continue;                }                // We have a cache hit; parse its data for delivery back to the request.                request.addMarker("cache-hit");                Response<?> response = request.parseNetworkResponse(                        new NetworkResponse(entry.data, entry.responseHeaders));                request.addMarker("cache-hit-parsed");                if (!entry.refreshNeeded()) {                    // Completely unexpired cache hit. Just deliver the response.                    mDelivery.postResponse(request, response);                } else {                    // Soft-expired cache hit. We can deliver the cached response,                    // but we need to also send the request to the network for                    // refreshing.                    request.addMarker("cache-hit-refresh-needed");                    request.setCacheEntry(entry);                    // Mark the response as intermediate.                    response.intermediate = true;                    // Post the intermediate response back to the user and have                    // the delivery then forward the request along to the network.                    mDelivery.postResponse(request, response, new Runnable() {                        @Override                        public void run() {                            try {                                mNetworkQueue.put(request);                            } catch (InterruptedException e) {                                // Not much we can do about this.                            }                        }                    });                }            } catch (InterruptedException e) {                // We may have been interrupted because it was time to quit.                if (mQuit) {                    return;                }                continue;            }        }    }

这个方法有点长,我们看到内部存在一个 while(true)循环,这说明这个缓存线程始终在运行,紧接这在下面这段代码中我们可以看到

 Cache.Entry entry = mCache.get(request.getCacheKey());                if (entry == null) {                    request.addMarker("cache-miss");                    // Cache miss; send off to the network dispatcher.                    mNetworkQueue.put(request);                    continue;                }                // If it is completely expired, just send it to the network.                if (entry.isExpired()) {                    request.addMarker("cache-hit-expired");                    request.setCacheEntry(entry);                    mNetworkQueue.put(request);                    continue;                }

首先从缓存中取出响应结果,如果为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据。

之后调用

 Response<?> response = request.parseNetworkResponse(                        new NetworkResponse(entry.data, entry.responseHeaders));

parseNetworkResponse 对数据进行解析,解析完成之后,通过ResponseDelivery 类 将数据回调出去。

下面我们 来看一下 NetworkDispatcher 的run() 方法是如何实现的;

@Override    public void run() {        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);        while (true) {            long startTimeMs = SystemClock.elapsedRealtime();            Request<?> request;            try {                // Take a request from the queue.                request = mQueue.take();            } catch (InterruptedException e) {                // We may have been interrupted because it was time to quit.                if (mQuit) {                    return;                }                continue;            }            try {                request.addMarker("network-queue-take");                // If the request was cancelled already, do not perform the                // network request.                if (request.isCanceled()) {                    request.finish("network-discard-cancelled");                    continue;                }                addTrafficStatsTag(request);                // Perform the network request.                NetworkResponse networkResponse = mNetwork.performRequest(request);                request.addMarker("network-http-complete");                // If the server returned 304 AND we delivered a response already,                // we're done -- don't deliver a second identical response.                if (networkResponse.notModified && request.hasHadResponseDelivered()) {                    request.finish("not-modified");                    continue;                }                // Parse the response here on the worker thread.                Response<?> response = request.parseNetworkResponse(networkResponse);                request.addMarker("network-parse-complete");                // Write to cache if applicable.                // TODO: Only update cache metadata instead of entire record for 304s.                if (request.shouldCache() && response.cacheEntry != null) {                    mCache.put(request.getCacheKey(), response.cacheEntry);                    request.addMarker("network-cache-written");                }                // Post the response back.                request.markDelivered();                mDelivery.postResponse(request, response);            } catch (VolleyError volleyError) {                volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);                parseAndDeliverNetworkError(request, volleyError);            } catch (Exception e) {                VolleyLog.e(e, "Unhandled exception %s", e.toString());                VolleyError volleyError = new VolleyError(e);                volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);                mDelivery.postError(request, volleyError);            }        }    }

这段代码中我们可以看到内部同样有一个 while(true)方法,同样说明这个网络线程始终在运行,然后我们可以看到 内部调用了

Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们只需要看BasicNetwork 中performRequest 方法的具体实现。

 @Override    public NetworkResponse performRequest(Request<?> request) throws VolleyError {        long requestStart = SystemClock.elapsedRealtime();        while (true) {            HttpResponse httpResponse = null;            byte[] responseContents = null;            Map<String, String> responseHeaders = Collections.emptyMap();            try {                // Gather headers.                Map<String, String> headers = new HashMap<String, String>();                addCacheHeaders(headers, request.getCacheEntry());                httpResponse = mHttpStack.performRequest(request, headers);                StatusLine statusLine = httpResponse.getStatusLine();                int statusCode = statusLine.getStatusCode();                responseHeaders = convertHeaders(httpResponse.getAllHeaders());                // Handle cache validation.                if (statusCode == HttpStatus.SC_NOT_MODIFIED) {                    Entry entry = request.getCacheEntry();                    if (entry == null) {                        return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,                                responseHeaders, true,                                SystemClock.elapsedRealtime() - requestStart);                    }                    // A HTTP 304 response does not have all header fields. We                    // have to use the header fields from the cache entry plus                    // the new ones from the response.                    // http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5                    entry.responseHeaders.putAll(responseHeaders);                    return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,                            entry.responseHeaders, true,                            SystemClock.elapsedRealtime() - requestStart);                }                // Some responses such as 204s do not have content.  We must check.                if (httpResponse.getEntity() != null) {                  responseContents = entityToBytes(httpResponse.getEntity());                } else {                  // Add 0 byte response as a way of honestly representing a                  // no-content request.                  responseContents = new byte[0];                }                // if the request is slow, log it.                long requestLifetime = SystemClock.elapsedRealtime() - requestStart;                logSlowRequests(requestLifetime, request, responseContents, statusLine);                if (statusCode < 200 || statusCode > 299) {                    throw new IOException();                }                return new NetworkResponse(statusCode, responseContents, responseHeaders, false,                        SystemClock.elapsedRealtime() - requestStart);            } catch (SocketTimeoutException e) {                attemptRetryOnException("socket", request, new TimeoutError());            } catch (ConnectTimeoutException e) {                attemptRetryOnException("connection", request, new TimeoutError());            } catch (MalformedURLException e) {                throw new RuntimeException("Bad URL " + request.getUrl(), e);            } catch (IOException e) {                int statusCode;                if (httpResponse != null) {                    statusCode = httpResponse.getStatusLine().getStatusCode();                } else {                    throw new NoConnectionError(e);                }                VolleyLog.e("Unexpected response code %d for %s", statusCode, request.getUrl());                NetworkResponse networkResponse;                if (responseContents != null) {                    networkResponse = new NetworkResponse(statusCode, responseContents,                            responseHeaders, false, SystemClock.elapsedRealtime() - requestStart);                    if (statusCode == HttpStatus.SC_UNAUTHORIZED ||                            statusCode == HttpStatus.SC_FORBIDDEN) {                        attemptRetryOnException("auth",                                request, new AuthFailureError(networkResponse));                    } else if (statusCode >= 400 && statusCode <= 499) {                        // Don't retry other client errors.                        throw new ClientError(networkResponse);                    } else if (statusCode >= 500 && statusCode <= 599) {                        if (request.shouldRetryServerErrors()) {                            attemptRetryOnException("server",                                    request, new ServerError(networkResponse));                        } else {                            throw new ServerError(networkResponse);                        }                    } else {                        // 3xx? No reason to retry.                        throw new ServerError(networkResponse);                    }                } else {                    attemptRetryOnException("network", request, new NetworkError());                }            }        }    }

这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是内部调用了

httpResponse = mHttpStack.performRequest(request, headers);

这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

在NetworkResponse 返回之后,调用了

Response<?> response = request.parseNetworkResponse(networkResponse);

对返回对response数据进行解析,解析完成之后调用

mDelivery.postResponse(request, response);

方法来回调解析出的数据。

下面我们来看数据在获取成功并解析之后是如何通过mDelivery 接口将数据回调出去的。

mDelivery 是 一个ResponseDelivery接口,其实现类是

private final Executor mResponsePoster;public class ExecutorDelivery implements ResponseDelivery {        ...        @Override    public void postResponse(Request<?> request, Response<?> response) {        postResponse(request, response, null);    }    @Override    public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {        request.markDelivered();        request.addMarker("post-response");        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));    }    @Override    public void postError(Request<?> request, VolleyError error) {        request.addMarker("post-error");        Response<?> response = Response.error(error);        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null));    }       public void run() {            // If this request has canceled, finish it and don't deliver.            if (mRequest.isCanceled()) {                mRequest.finish("canceled-at-delivery");                return;            }            // Deliver a normal response or error, depending.            if (mResponse.isSuccess()) {                mRequest.deliverResponse(mResponse.result);            } else {                mRequest.deliverError(mResponse.error);            }            // If this is an intermediate response, add a marker, otherwise we're done            // and the request can be finished.            if (mResponse.intermediate) {                mRequest.addMarker("intermediate-response");            } else {                mRequest.finish("done");            }            // If we have been provided a post-delivery runnable, run it.            if (mRunnable != null) {                mRunnable.run();            }       }    }

可以看到内部直接调用了postResponse ,而postResponse内部调用了mResponsePoster.execute 方法,在调用execute方法时,执行了run 方法,而在run方法内部我们可以看到

mRequest.deliverResponse(mResponse.result)

将数据回调出去。

至此这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢,下面在看一下该图是不是更加清晰了呢?

这里写图片描述

0 0
原创粉丝点击