ROS机器人Diego 1#制作(九)视觉系统之使用Xtion发布点云数据

来源:互联网 发布:python 自带shell 编辑:程序博客网 时间:2024/05/17 19:56

要做到机器人的SLAM自适应导航,最基本的要有激光雷达数据或者点云数据,但激光雷达目前价格太高,在淘宝上便宜的也要将近3000块,实在是太贵了,另外可替代的方法是用具有深度摄像机作为传感器发布点云数据,一般用的比较多的是微软的Kinect,或者华硕的Xtion。目前Kinect已经有2.0版本,而且二手的价格也比较便宜,但Kinect2.0支持的USB3.0接口,树莓派USB接口都是2.0的,无奈只能放弃Kinect2.0,Kinect1.0笔者曾经有过一台,影像中感觉体积太大。考虑再三后最终决定使用Xtion,赶紧到淘宝上找,发现价格不便宜,后来发现乐视电视配的第一代体感摄像头,完全是OEM的Xtion,关键是价格要比Xtion便宜好几百,果断进了一台LeTV Xtion,货到后发现装上效果还不错,先上张图:
这里写图片描述
一、安装:
1.安装OpenNI包

sudo apt-get install ros-kinetic-openni-camerasudo apt-get install ros-kinetic-openni-launch

2.安装Xtion的新版驱动(现在买到的都是新版本的)

sudo apt-get install libopenni-sensor-primesense0

3.启动openni节点(先要在其他终端中启动roscore)

roslaunch openni_launch openni.launch

启动成功后终端应该显示如下信息
这里写图片描述
这里的警告信息可以忽略,不影响使用
4.查看摄像头的所生成的影像

rosrun image_view disparity_view image:=/camera/depth/disparity 

也可以通过rviz来查看生成的影像,执行如下命令

rosrun rviz rviz

二、生成点云数据,参考了两篇文档
OpenNI本身就已经有点云数据了,这篇文章完全是看了前辈的文章,就想把这些优秀的代码整合到ROS中来
官方文档http://wiki.ros.org/navigation/Tutorials/RobotSetup/Sensors
古月居的http://blog.csdn.net/hcx25909/article/details/8654684

1.源代码

#include <ros/ros.h>#include <sensor_msgs/PointCloud.h>#include <XnCppWrapper.h>#include <iostream>#include <iomanip>#include <vector>using namespace xn; using namespace std; struct SColorPoint3D  {      float  X;      float  Y;      float  Z;      float  R;      float  G;      float  B;      SColorPoint3D( XnPoint3D pos, XnRGB24Pixel color )      {        X = pos.X;        Y = pos.Y;        Z = pos.Z;        R = (float)color.nRed / 255;        G = (float)color.nGreen / 255;        B = (float)color.nBlue / 255;      }  };  void GeneratePointCloud( DepthGenerator& rDepthGen,                           const XnDepthPixel* pDepth,                           const XnRGB24Pixel* pImage,                           vector<SColorPoint3D>& vPointCloud )  {      // number of point is the number of 2D image pixel      DepthMetaData mDepthMD;      rDepthGen.GetMetaData( mDepthMD );      unsigned int uPointNum = mDepthMD.FullXRes() * mDepthMD.FullYRes();      // build the data structure for convert      XnPoint3D* pDepthPointSet = new XnPoint3D[ uPointNum ];      unsigned int i, j, idxShift, idx;      for( j = 0; j < mDepthMD.FullYRes(); ++j )      {          idxShift = j * mDepthMD.FullXRes();          for( i = 0; i < mDepthMD.FullXRes(); ++i )          {              idx = idxShift + i;              pDepthPointSet[idx].X = i;              pDepthPointSet[idx].Y = j;              pDepthPointSet[idx].Z = pDepth[idx];          }      }      // un-project points to real world      XnPoint3D* p3DPointSet = new XnPoint3D[ uPointNum ];      rDepthGen.ConvertProjectiveToRealWorld( uPointNum, pDepthPointSet, p3DPointSet );      delete[] pDepthPointSet;      // build point cloud      for( i = 0; i < uPointNum; ++ i )      {          // skip the depth 0 points          if( p3DPointSet[i].Z == 0 )              continue;          vPointCloud.push_back( SColorPoint3D( p3DPointSet[i], pImage[i] ) );      }      delete[] p3DPointSet;  }  int main(int argc, char** argv){  ros::init(argc, argv, "point_cloud_publisher");  ros::NodeHandle n;  ros::Publisher cloud_pub = n.advertise<sensor_msgs::PointCloud>("cloud", 50);  unsigned int num_points = 100;  int count = 0;  ros::Rate r(1.0);  /////////////////  XnStatus eResult = XN_STATUS_OK;    int i = 0;    // init    Context mContext;    eResult = mContext.Init();      DepthGenerator mDepthGenerator;    eResult = mDepthGenerator.Create(mContext);    ImageGenerator mImageGenerator;    eResult = mImageGenerator.Create(mContext);    // set output mode    XnMapOutputMode mapMode;    mapMode.nXRes = XN_VGA_X_RES;    mapMode.nYRes = XN_VGA_Y_RES;    mapMode.nFPS  = 30;    eResult = mDepthGenerator.SetMapOutputMode(mapMode);    eResult = mImageGenerator.SetMapOutputMode(mapMode);    // start generating      eResult = mContext.StartGeneratingAll();    // read data    vector<SColorPoint3D> vPointCloud;   /////////////////  while(n.ok()){    eResult = mContext.WaitNoneUpdateAll();      // get the depth map      const XnDepthPixel*  pDepthMap = mDepthGenerator.GetDepthMap();      // get the image map      const XnRGB24Pixel*  pImageMap = mImageGenerator.GetRGB24ImageMap();      // generate point cloud      vPointCloud.clear();      GeneratePointCloud(mDepthGenerator, pDepthMap, pImageMap, vPointCloud );      // print point cloud      cout.flags(ios::left);    //Left-aligned      cout << "Point number: " << vPointCloud.size() << endl;     num_points=vPointCloud.size();    sensor_msgs::PointCloud cloud;    cloud.header.stamp = ros::Time::now();    cloud.header.frame_id = "sensor_frame";    cloud.points.resize(num_points);    //we'll also add an intensity channel to the cloud    cloud.channels.resize(3);    cloud.channels[0].name = "R";    cloud.channels[0].values.resize(num_points);    cloud.channels[1].name = "G";    cloud.channels[1].values.resize(num_points);    cloud.channels[2].name = "G";    cloud.channels[2].values.resize(num_points);    //generate some fake data for our point cloud    for(unsigned int i = 0; i < num_points; ++i){      cloud.points[i].x = vPointCloud[i].X;      cloud.points[i].y = vPointCloud[i].Y;      cloud.points[i].z = vPointCloud[i].Z;      cloud.channels[0].values[i] = vPointCloud[i].R;      cloud.channels[1].values[i] = vPointCloud[i].G;      cloud.channels[2].values[i] = vPointCloud[i].B;    }    cloud_pub.publish(cloud);    ++count;    r.sleep();  }  return 0;}

2.另外在包目录下的CMakeLists.txt文件中有两处修改,否则编译会出错
增加openni的引用路径

include_directories ("/usr/include/ni/")

增加新的可执行文件说明

add_executable(XtionPointCloud src/XtionPointCloud.cpp)target_link_libraries(XtionPointCloud ${catkin_LIBRARIES})target_link_libraries(XtionPointCloud OpenNI)

修改保存后在~/catkin_ws下执行编译命令

catkin_make

3.启动XtionPointCloud节点

rosrun diego_nav XtionPointCloud

打开另外一个终端查看发布的点云数据

rostopic echo /cloud

这时候就会看到一屏一屏的数据
这里写图片描述

树莓派处理其点云数据还是很吃力的,这个时候树莓派的系统资源使用情况:
这里写图片描述
4个CPU的使用都在50%以上
内存使用接近90%

0 0