Android 强弱指针分析

来源:互联网 发布:应用搬家软件 编辑:程序博客网 时间:2024/05/17 06:17

Android 强弱指针分析

在C C++ 语言中,内存的管理历来是一个比较难的问题,在java 中内存new 的对象由jvm 虚拟机自动回收。在Android 上面提供了sp 和wp 两种类型的指针,管理new 出来的对象,能够自动的回收对象,减轻在内存管理上的负担。

实现对对象的管理通常的做法是使用引用计数,每增加一次引用引用计数增加一,当引用计数为0时,销毁这个对象。引用计数可以放在对象内部,也可以放在外部。Android的做法是放在对象内部。

在Android 7.0 版本上相关的代码及位置在:

  • system/core/libutils/RefBase.cpp
  • system/core/include/utils/RefBase.h
  • system/core/include/utils/StrongPointer.h

C++ 11

在C++ 11 中引入了大量的新特性,使一些开发变得简单。在引用计数的变量上使用了
std::atomic模板类:template struct atomic;提供原子操作,在原来的版本上使用的是Android平台封装的API。
主要用到两个API:fetch_add 和fetch_sub,用于加1和减1。

integral fetch_add(integral, memory_order = memory_order_seq_cst) volatile;integral fetch_add(integral, memory_order = memory_order_seq_cst);integral fetch_sub(integral, memory_order = memory_order_seq_cst) volatile;integral fetch_sub(integral, memory_order = memory_order_seq_cst);

用于线程的同步的API,没有找到具体的资料。

atomic_thread_fence

参考C++11 并发指南六(atomic 类型详解三 std::atomic (续))

这两个API的最后一个参数是std::memory_order类型。主要是内存模型参数,可以调整代码的执行顺序,告诉编译器的优化方法,比如如果GCC 加了O2参数,会对代码的执行顺序做一定的调整,但是在多线程中就会带来一定的影响,出现错误,内存模型参数可以指定编译器的优化方式,限定多个原子语句的执行顺序。

C++11 并发指南七(C++11 内存模型一:介绍)

/*std::memory_orderC++  Atomic operations library Defined in header <atomic>*/enum memory_order {    memory_order_relaxed,    memory_order_consume,    memory_order_acquire,    memory_order_release,    memory_order_acq_rel,    memory_order_seq_cst};

主要用到两个:
1. std::memory_order_relaxed:线程内顺序执行,线程间随意。
2. std::memory_order_seq_cst:多线程保持顺序一致性,像单线程一样的执行。

参考:
std::memory_order

这段内容据说完全搞懂的全球屈指可数。

主要的类

1. RefBase

需要能够自动管理内存的对象都要继承这个类,在RefBase内部有int 型的引用计数。实际是通过weakref_impl类型的mRefs管理。

RefBase::RefBase() : mRefs(new weakref_impl(this)){}
void RefBase::incStrong(const void* id) const{    weakref_impl* const refs = mRefs;    refs->incWeak(id);    refs->addStrongRef(id);    const int32_t c = refs->mStrong.fetch_add(1, std::memory_order_relaxed);    if (c != INITIAL_STRONG_VALUE)  {        return;    }    int32_t old = refs->mStrong.fetch_sub(INITIAL_STRONG_VALUE,            std::memory_order_relaxed);    refs->mBase->onFirstRef();}void RefBase::decStrong(const void* id) const{    weakref_impl* const refs = mRefs;    refs->removeStrongRef(id);    const int32_t c = refs->mStrong.fetch_sub(1, std::memory_order_release);    if (c == 1) {        std::atomic_thread_fence(std::memory_order_acquire);        refs->mBase->onLastStrongRef(id);        int32_t flags = refs->mFlags.load(std::memory_order_relaxed);        if ((flags&OBJECT_LIFETIME_MASK) == OBJECT_LIFETIME_STRONG) {            delete this;            // Since mStrong had been incremented, the destructor did not            // delete refs.        }    }    refs->decWeak(id);}

通过 ==void incStrong(const void* id) const== 函数增加引用计数,
1. refs->incWeak(id); 增加弱引用计数。
2. 增加强引用计数,如果 const int32_t c = refs->mStrong.fetch_add(1, std::memory_order_relaxed);
返回值c 为初始值INITIAL_STRONG_VALUE,执行onFirstRef。onFirstRef 函数体为空,可以重载做一些初始化工作。

通过 ==void decStrong(const void* id) const== 减少引用计数。
1. 减少强引用计数 const int32_t c = refs->mStrong.fetch_sub(1, std::memory_order_release);
2. 如果从c==1, 先做一些清理工作:onLastStrongRef 接着删除 delete this
3. 如果不为1,refs->decWeak(id);

2. RefBase::weakref_type

RefBase::weakref_type 主要定义了两个函数:incWeak, decWeak,操作弱引用计数。

void RefBase::weakref_type::incWeak(const void* id){    weakref_impl* const impl = static_cast<weakref_impl*>(this);    impl->addWeakRef(id);    const int32_t c __unused = impl->mWeak.fetch_add(1,std::memory_order_relaxed);    ALOG_ASSERT(c >= 0, "incWeak called on %p after last weak ref", this);}void RefBase::weakref_type::decWeak(const void* id){    weakref_impl* const impl = static_cast<weakref_impl*>(this);    impl->removeWeakRef(id);    const int32_t c = impl->mWeak.fetch_sub(1, std::memory_order_release);    ALOG_ASSERT(c >= 1, "decWeak called on %p too many times", this);    if (c != 1) return;    atomic_thread_fence(std::memory_order_acquire);    int32_t flags = impl->mFlags.load(std::memory_order_relaxed);    if ((flags&OBJECT_LIFETIME_MASK) == OBJECT_LIFETIME_STRONG) {        // This is the regular lifetime case. The object is destroyed        // when the last strong reference goes away. Since weakref_impl        // outlive the object, it is not destroyed in the dtor, and        // we'll have to do it here.        if (impl->mStrong.load(std::memory_order_relaxed)                == INITIAL_STRONG_VALUE) {            // Special case: we never had a strong reference, so we need to            // destroy the object now.            delete impl->mBase;        } else {            // ALOGV("Freeing refs %p of old RefBase %p\n", this, impl->mBase);            delete impl;        }    } else {        // This is the OBJECT_LIFETIME_WEAK case. The last weak-reference        // is gone, we can destroy the object.        impl->mBase->onLastWeakRef(id);        delete impl->mBase;    }}

==需要注意的是在执行delete 是使用了mFlags 这个变量,在下边可以看到这个变量的定义。==

3. RefBase::weakref_impl

RefBase::weakref_impl 继承自RefBase::weakref_type 真实的引用计数使用RefBase的内部类RefBase::weakref_impl管理, 有四个内部变量:mStong mWeak mBase, mFlags. mStrong 和sp 配合,负责强引用计数;mWeak 和wp 配合,负责弱引用计数。

class RefBase::weakref_impl : public RefBase::weakref_type{public:    std::atomic<int32_t>    mStrong;    std::atomic<int32_t>    mWeak;    RefBase* const          mBase;    std::atomic<int32_t>    mFlags;}// mFlags定义// OBJECT_LIFETIME_STRONG 为默认值,对象以强引用计数管理生命周期// OBJECT_LIFETIME_WEAK             对象以弱引用计数管理生命周期     enum {        OBJECT_LIFETIME_STRONG  = 0x0000,          OBJECT_LIFETIME_WEAK    = 0x0001,        OBJECT_LIFETIME_MASK    = 0x0001    };

4. sp 为强指针

负责强引用计数管理,内部有m_ptr 指针保存RefBase对象,重载了 “=”操作符,调用m_ptr的==incStrong==操作引用计数+1, 析构的时候调用==decStrong== -1.

template<typename T>sp<T>& sp<T>::operator =(const sp<T>& other) {    T* otherPtr(other.m_ptr);    if (otherPtr)        otherPtr->incStrong(this);    if (m_ptr)        m_ptr->decStrong(this);    m_ptr = otherPtr;    return *this;}template<typename T>sp<T>::~sp() {    if (m_ptr)        m_ptr->decStrong(this);}

5. wp 是弱指针

负责对象之间的解引用。如果子类保存有父指针,父类保存有子指针,在析构的时候子类先析构,但是父类保有子类的引用,导致引用计数不为0,无法删除子类;然后父类析构,子类保有父类的引用计数,父类也无法删除,这时候需要使用wp避免出现这种情况。和sp 一样 wp重载了 操作符“=” 调用 incWeak, 在析构的时候 decWeak。
在RefBase 里面有两个变量mStrong, mWeak 分别保存强弱引用计数,只要强引用计数为0,强制delete。

举个例子:
我们定义两个类A B, 后析构的B使用wp类型的指针保存A,在析构的时候如果弱引用类型不为0,只要强引用类型为0,强制delete。A先析构,强引用类型为0,软引用类型为1,强制delete, 这样B的强引用类型也变为1,B析构的时候执行完del 后强引用类型为0,delete

template<typename T>wp<T>& wp<T>::operator = (const wp<T>& other){    weakref_type* otherRefs(other.m_refs);    T* otherPtr(other.m_ptr);    if (otherPtr) otherRefs->incWeak(this);    if (m_ptr) m_refs->decWeak(this);    m_ptr = otherPtr;    m_refs = otherRefs;    return *this;}template<typename T>wp<T>::~wp(){    if (m_ptr) m_refs->decWeak(this);}

6. 强弱指针的对比

  1. 通过类图可以发现,强指针实现了 “.” “->” 操作符的重载,因此sp 可以直接方位类成员,而wp 却不能,
  2. 但是wp 可以转化为sp
template<typename T>sp<T> wp<T>::promote() const{    sp<T> result;    if (m_ptr && m_refs->attemptIncStrong(&result)) {        result.set_pointer(m_ptr);    }    return result;}

具体的类图如下:
Android 指针类图

二 移植到PC

为了编译研究测试代码,把这是三个文件移植到PC环境下。Andrioid7.0代码针对C++ 11 做了修改,在API的跨平台编译上做的非常好,没什么大的改动,注释掉部分Android的Log 代码就编译通过了。在这里也赞一下 C++ 11。平台为MAC,IDE为CLion 2016.3,编译使用CMake。

coded地址

三 LightRefBase

在不考虑类互相引用的情况下,引用计数比较简单,Android提供了LightRefBase模板类
内部采用 mutable std::atomic mCount; 保存引用计数。

template <class T>class LightRefBase{public:    inline LightRefBase() : mCount(0) { }    inline void incStrong(__attribute__((unused)) const void* id) const {        mCount.fetch_add(1, std::memory_order_relaxed);    }    inline void decStrong(__attribute__((unused)) const void* id) const {        if (mCount.fetch_sub(1, std::memory_order_release) == 1) {            std::atomic_thread_fence(std::memory_order_acquire);            delete static_cast<const T*>(this);        }    }    //! DEBUGGING ONLY: Get current strong ref count.    inline int32_t getStrongCount() const {        return mCount.load(std::memory_order_relaxed);    }    typedef LightRefBase<T> basetype;protected:    inline ~LightRefBase() { }private:    friend class ReferenceMover;    inline static void renameRefs(size_t n, const ReferenceRenamer& renamer) { }    inline static void renameRefId(T* ref,            const void* old_id, const void* new_id) { }private:    mutable std::atomic<int32_t> mCount;};

最开始的测试代码如下:

class LightRefBaseTest: public LightRefBase<LightRefBaseTest>{public:    LightRefBaseTest(){std::cout << "Hello, LightRefBaseTest!" << std::endl;};    ~LightRefBaseTest(){std::cout << "Hello, ~LightRefBaseTest()!" << std::endl;};};int main() {    std::cout << "Hello, World!" << std::endl;    LightRefBaseTest lightTest;    return 0;}/*结果:Hello, World!Hello, LightRefBaseTest!Hello, ~LightRefBaseTest()!Process finished with exit code 0*/

修改下LightRefBaseTest lightTest 为:

int main() {    std::cout << "Hello, World!" << std::endl;    LightRefBaseTest* lightTest = new LightRefBaseTest();    return 0;}/*结果 LightRefBaseTest没有析构:Hello, World!Hello, LightRefBaseTest!Process finished with exit code 0*/

再修改下,使用sp 指针,LightRefBaseTest又析构了:

int main() {    std::cout << "Hello, World!" << std::endl;    sp<LightRefBaseTest> sp1 = new LightRefBaseTest();    return 0;}/*看下结果,LightRefBaseTest析构了:Hello, World!Hello, LightRefBaseTest!Hello, ~LightRefBaseTest()!Process finished with exit code 0*/

看下互相引用的情况:

class LightRefBaseTest2;class LightRefBaseTest: public LightRefBase<LightRefBaseTest>{public:    LightRefBaseTest(){std::cout << "Hello, LightRefBaseTest!" << std::endl;};    ~LightRefBaseTest(){std::cout << "Hello, ~LightRefBaseTest()!" << std::endl;};    void setPointer(sp<LightRefBaseTest2> pointer){mPointer = pointer;};private:    sp<LightRefBaseTest2>  mPointer;};class LightRefBaseTest2: public LightRefBase<LightRefBaseTest>{public:    LightRefBaseTest2(){std::cout << "Hello, LightRefBaseTest2!" << std::endl;};    ~LightRefBaseTest2(){std::cout << "Hello, ~LightRefBaseTest2()!" << std::endl;};    void setPointer(sp<LightRefBaseTest> pointer){mPointer = pointer;};private:    sp<LightRefBaseTest>  mPointer;};int main() {    std::cout << "Hello, World!" << std::endl;//    LightRefBaseTest* lightTest = new LightRefBaseTest();    sp<LightRefBaseTest> sp1 = new LightRefBaseTest();    sp<LightRefBaseTest2> sp2 = new LightRefBaseTest2();    sp1->setPointer(sp2);    sp2->setPointer(sp1);    return 0;}/* 两个类都没有析构。LightRefBaseTest析构的时候由于LightRefBaseTest2持有它的引用,导致不能够调用delete, 同理LightRefBaseTest2也不能够析构Hello, World!Hello, LightRefBaseTest!Hello, LightRefBaseTest2!Process finished with exit code 0*/

LightRefBase 已经很完美的解决了C++ new 对象的管理问题,但是有一个致命的缺陷,不能解决类之间的相互引用。

__attribute__

在LightRefBase 的 incStong 和decStrong 的定义中有使用到了attribute 关键字。attribute 关键字为GCC 编译器特有的特性,和平台无关,可以定义函数 变量的属性。

Using GNU C attribute

wp sp RefBase 配合使用 释放内存

image

在下边的讨论中mFlages = OBJECT_LIFETIME_STRONG 为默认值,其他两种情况不讨论。

第一种析构: 析构路线图如图中 A线

这种情况下,强弱引用计数大小一致,在强引用计数首先为0 后,就会引发RefBase 的析构。

class SubRefBaseTest;class RefBaseTest: public RefBase{public:    RefBaseTest(){std::cout << "Hello, RefBaseTest!" << std::endl;};    ~RefBaseTest(){std::cout << "Hello, ~RefBaseTest()!" << std::endl;};    void setPointer(sp<SubRefBaseTest> pointer){        mPointer = pointer;    };private:    sp<SubRefBaseTest> mPointer;};class SubRefBaseTest: public RefBase{public:    SubRefBaseTest(){ std::cout << "Hello, SubRefBaseTest!" << std::endl;};    ~SubRefBaseTest(){std::cout << "Hello, ~SubRefBaseTest()!" << std::endl;};    void setPointer(sp<RefBaseTest> pointer){        mPointer = pointer;    };private:    sp<RefBaseTest> mPointer;};int main() {    std::cout << "Hello, World!" << std::endl;    sp<RefBaseTest>  refBaseTest = new RefBaseTest();    sp<SubRefBaseTest>  subRefBaseTest = new SubRefBaseTest();    return 0;}/*Hello, World!Hello, RefBaseTest!Hello, SubRefBaseTest!Hello, ~SubRefBaseTest()!Hello, ~RefBaseTest()!Process finished with exit code 0*/
int main() {    std::cout << "Hello, World!" << std::endl;    sp<RefBaseTest>  refBaseTest = new RefBaseTest();    sp<SubRefBaseTest>  subRefBaseTest = new SubRefBaseTest();    refBaseTest->setPointer(subRefBaseTest);    subRefBaseTest->setPointer(refBaseTest);    return 0;}/* 还是无法析构Hello, World!Hello, RefBaseTest!Hello, SubRefBaseTest!Process finished with exit code 0*/
class RefBaseTest: public RefBase{public:    RefBaseTest(){std::cout << "Hello, RefBaseTest!" << std::endl;};    ~RefBaseTest(){std::cout << "Hello, ~RefBaseTest()!" << std::endl;};    void setPointer(wp<SubRefBaseTest> pointer){        mPointer = pointer;    };private:    wp<SubRefBaseTest> mPointer;};/* 修改RefBaseTest 引用类型为wp, 正常析构了。在这里用一个隐式的类型转化,refBaseTest->setPointer(subRefBaseTest);将强指针转为弱指针。看下重载的 “=” 操作符 弱引用加一。 Hello, World!Hello, RefBaseTest!Hello, SubRefBaseTest!Hello, ~SubRefBaseTest()!Hello, ~RefBaseTest()!Process finished with exit code 0*/template<typename T>wp<T>& wp<T>::operator = (const sp<T>& other){    weakref_type* newRefs =        other != NULL ? other->createWeak(this) : 0;    T* otherPtr(other.m_ptr);    if (m_ptr) m_refs->decWeak(this);    m_ptr = otherPtr;    m_refs = newRefs;    return *this;}

第二种析构

如图中线路B所示,这种情况就是发生了相互引用。先析构的被用弱指针保存。

int main() {    std::cout << "Hello, World!" << std::endl;    wp<RefBaseTest> wp1 = new RefBaseTest();    return 0;}

~RefBase

new 的对象的处理在这里真正的删除。
1. 是否有过强引用,没有 删除内部的引用计数对象mRefs,这种情况是OBJECT_LIFETIME_STRONG起作用
2. OBJECT_LIFETIME_STRONG 不起作用的情况,弱引用计数控制对象生命周期。
3. 总之,RefBase 的析构中处理引用计数的回收。
4.

RefBase::~RefBase(){    if (mRefs->mStrong.load(std::memory_order_relaxed)            == INITIAL_STRONG_VALUE) {        // we never acquired a strong (and/or weak) reference on this object.        delete mRefs;    } else {        // life-time of this object is extended to WEAK, in        // which case weakref_impl doesn't out-live the object and we        // can free it now.        int32_t flags = mRefs->mFlags.load(std::memory_order_relaxed);        if ((flags & OBJECT_LIFETIME_MASK) != OBJECT_LIFETIME_STRONG) {            // It's possible that the weak count is not 0 if the object            // re-acquired a weak reference in its destructor            if (mRefs->mWeak.load(std::memory_order_relaxed) == 0) {                delete mRefs;            }        }    }    // for debugging purposes, clear this.    const_cast<weakref_impl*&>(mRefs) = NULL;}

C++ 11 的智能指针

C++ 智能指针

0 0
原创粉丝点击