CUDA并发相关(流并发、主机设备并发)

来源:互联网 发布:sap84软件购买 编辑:程序博客网 时间:2024/04/28 19:17

CUDA中下面的一些执行步骤能够互相异步并发执行:
主机上的计算
设备上的计算
主机到设备的数据传输
设备到主机的数据传输
一个设备中内存的数据传输
不同设备之间的数据传输

注意,上面的6个操作是互相之间能够并发,在每个单独项上是不能够并发的(除了第二项设备上可以通过流并发来进行设备上计算的并发),但并不是每个英伟达的显卡都支持上面所有的并发,因此使用之前需要查询显卡是否支持。

主机和设备之间的并发:
核函数的启动
一个设备内,内存的复制
从主机到设备复制的内存块大小小于等于64kb时
函数后缀上带有Async的内存复制
内存设置函数调用(比如将某块内存全部置零)
最后,可以通过将变量CUDA_LAUNCH_BLOCKING置1来将核函数的启动变成同步,这个特性只用于调试

核函数之间的并发:
在设备计算能力大于2.1时支持核函数的并发,这个特性可以通过查询变量concurrentKernels来知道,当这个变量为1时说明设备支持,另外需要注意以下几点:
一个cuda上下文中的核函数不能够和另一个cuda上下文中的核函数并行
当一个核函数中大量使用纹理或局部内存时,核函数之间能够并行的可能性就在降低

数据传输与核函数执行的并发:
通过查询变量asyncEngineCount来检查设备是否支持,当设备支持时其值应当大于0

数据传输并发(指数据从主机到设备和从设备到主机的并发):
查询变量asyncEngineCount,支持时,其值应当等于2


前面的并发操作都是通过流来管理的:流与流之间可以并发,但流内部是有顺序的

流的同步:

//等待所有的流都执行完cudaDeviceSynchronize()//等待指定流中的任务全部执行完cudaStreamSynchronize(cudaStream_t stream)//某个流等待某个事件执行完再执行,下面的例子中使用了这个函数:需要注意的是这个函数也是非阻塞的cudaStreamWaitEvent(cudaStream_t stream,cudaEvent_t event,unsigned int flags)//查询某个流中的任务是否完成cudaTreamQuery(cudaStream_t stream)

上面是流的显式同步,而隐式同步有以下几点:
如果主机线程中涉及到以下几点的话,那么两个流中的命令是无法同步的:
主机分配锁页内存
设备分配内存
将设备内存全部置成指定的值(原话是:a device memory set)
将两个地址的数据复制到同一个设备内存(原话是:a memory copy between two addresses to the same device memory)
任何附加到默认流中的命令

流中添加回调函数:
cudaStreamAddCallback(cudaStream_t stream,cudaStreamCallback_t callback,void *userdata,unsigned int flags)
需要注意的是第三个参数,是用户传递给回调函数的参数,cudaStreamCallback_t的定义:
typedef void (CUDART_CB cudaStreamCallback_t) (cudaStream_t stream,cudaError_t status,void userData)

流的优先级,流在创建时可以指定优先级:涉及的函数如下:
cudaStreamCreateWaitPriority()
cudaDeviceGetStreamPriorityRange()

事件:事件有两个作用:
第一个是记录某个流中某个操作的运行事件,创建时使用cudaEventCreate(cudaEvent_t *event),记录时间点:
cudaEventRecord(cudaEvent_t event,cudaStream_t stream),记录某个流下的时间点,由于是在主机上打印事件信息,因此主机需要等待事件完成,
因此还需要加上事件同步:cudaEventSynchronize(cudaEvent_t event),一个标准的事件记录:

cudaEvent_t start,end;
cudaEventCreate(&start);
cudaEventCreate(&end);
cudaEventRecord(start,stream)
//some stream operation
cudaEventRecord(end event,stream)
cudaEventSynchronize(end)
float elaspsedTime;
cudaEventElapsedTime(&elapsedTime,start,end);

第二个是作为一个标记,放在某个流操作的后面,标记这个流的该操作完成:
创建时使用:cudaEventCreateWithFlags(cudaEvent_t *event,unsigned int flags)
flags应该指定为cudaEventDisableTiming;flags还有其他值,请参考具体的手册

同步调用;相关函数:
cudaSetDeviceFlags(unsigned int flags):相见手册

核函数的并发执行,在下面需要注意的是,流与流之间通过事件来同步,即一个流等待另一个流执行完某个操作后再进行下一步操作,这时,创建事件时,应该使用:

checkCudaErrors(cudaEventCreateWithFlags(&(kernelEvent[i]), cudaEventDisableTiming));

使用时应该是:当前流等待上一个流运行后当前流再执行:

    for (int i=0; i<nkernels; ++i)    {        clock_block<<<1,1,0,streams[i]>>>(&d_a[i], time_clocks);        total_clocks += time_clocks;        checkCudaErrors(cudaEventRecord(kernelEvent[i], streams[i]));        //make the last stream wait for the kernel event to be recorded        checkCudaErrors(cudaStreamWaitEvent(streams[nstreams-1], kernelEvent[i],0));    }
/* * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * *///// This sample demonstrates the use of streams for concurrent execution. It also illustrates how to// introduce dependencies between CUDA streams with the new cudaStreamWaitEvent function introduced// in CUDA 3.2.//// Devices of compute capability 1.x will run the kernels one after another// Devices of compute capability 2.0 or higher can overlap the kernels//#include <stdio.h>#include <helper_functions.h>#include <helper_cuda.h>// This is a kernel that does no real work but runs at least for a specified number of clocks__global__ void clock_block(clock_t *d_o, clock_t clock_count){    unsigned int start_clock = (unsigned int) clock();    clock_t clock_offset = 0;    while (clock_offset < clock_count)    {        unsigned int end_clock = (unsigned int) clock();        // The code below should work like        // this (thanks to modular arithmetics):        //        // clock_offset = (clock_t) (end_clock > start_clock ?        //                           end_clock - start_clock :        //                           end_clock + (0xffffffffu - start_clock));        //        // Indeed, let m = 2^32 then        // end - start = end + m - start (mod m).        clock_offset = (clock_t)(end_clock - start_clock);    }    d_o[0] = clock_offset;}// Single warp reduction kernel__global__ void sum(clock_t *d_clocks, int N){    __shared__ clock_t s_clocks[32];    clock_t my_sum = 0;    for (int i = threadIdx.x; i < N; i+= blockDim.x)    {        my_sum += d_clocks[i];    }    s_clocks[threadIdx.x] = my_sum;    syncthreads();    for (int i=16; i>0; i/=2)    {        if (threadIdx.x < i)        {            s_clocks[threadIdx.x] += s_clocks[threadIdx.x + i];        }        syncthreads();    }    d_clocks[0] = s_clocks[0];}int main(int argc, char **argv){    int nkernels = 8;               // number of concurrent kernels    int nstreams = nkernels + 1;    // use one more stream than concurrent kernel    int nbytes = nkernels * sizeof(clock_t);   // number of data bytes    float kernel_time = 10; // time the kernel should run in ms    float elapsed_time;   // timing variables    int cuda_device = 0;    printf("[%s] - Starting...\n", argv[0]);    // get number of kernels if overridden on the command line    if (checkCmdLineFlag(argc, (const char **)argv, "nkernels"))    {        nkernels = getCmdLineArgumentInt(argc, (const char **)argv, "nkernels");        nstreams = nkernels + 1;    }    // use command-line specified CUDA device, otherwise use device with highest Gflops/s    cuda_device = findCudaDevice(argc, (const char **)argv);    cudaDeviceProp deviceProp;    checkCudaErrors(cudaGetDevice(&cuda_device));    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));    if ((deviceProp.concurrentKernels == 0))    {        printf("> GPU does not support concurrent kernel execution\n");        printf("  CUDA kernel runs will be serialized\n");    }    printf("> Detected Compute SM %d.%d hardware with %d multi-processors\n",           deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount);    // allocate host memory    clock_t *a = 0;                     // pointer to the array data in host memory    checkCudaErrors(cudaMallocHost((void **)&a, nbytes));    // allocate device memory    clock_t *d_a = 0;             // pointers to data and init value in the device memory    checkCudaErrors(cudaMalloc((void **)&d_a, nbytes));    // allocate and initialize an array of stream handles    cudaStream_t *streams = (cudaStream_t *) malloc(nstreams * sizeof(cudaStream_t));    for (int i = 0; i < nstreams; i++)    {        checkCudaErrors(cudaStreamCreate(&(streams[i])));    }    // create CUDA event handles    cudaEvent_t start_event, stop_event;    checkCudaErrors(cudaEventCreate(&start_event));    checkCudaErrors(cudaEventCreate(&stop_event));    // the events are used for synchronization only and hence do not need to record timings    // this also makes events not introduce global sync points when recorded which is critical to get overlap    cudaEvent_t *kernelEvent;    kernelEvent = (cudaEvent_t *) malloc(nkernels * sizeof(cudaEvent_t));    for (int i = 0; i < nkernels; i++)    {        checkCudaErrors(cudaEventCreateWithFlags(&(kernelEvent[i]), cudaEventDisableTiming));    }    //////////////////////////////////////////////////////////////////////    // time execution with nkernels streams    clock_t total_clocks = 0;#if defined(__arm__) || defined(__aarch64__)    // the kernel takes more time than the channel reset time on arm archs, so to prevent hangs reduce time_clocks.    clock_t time_clocks = (clock_t)(kernel_time * (deviceProp.clockRate / 1000));#else    clock_t time_clocks = (clock_t)(kernel_time * deviceProp.clockRate);#endif    cudaEventRecord(start_event, 0);    // queue nkernels in separate streams and record when they are done    for (int i=0; i<nkernels; ++i)    {        clock_block<<<1,1,0,streams[i]>>>(&d_a[i], time_clocks);        total_clocks += time_clocks;        checkCudaErrors(cudaEventRecord(kernelEvent[i], streams[i]));        // make the last stream wait for the kernel event to be recorded        checkCudaErrors(cudaStreamWaitEvent(streams[nstreams-1], kernelEvent[i],0));    }    // queue a sum kernel and a copy back to host in the last stream.    // the commands in this stream get dispatched as soon as all the kernel events have been recorded    sum<<<1,32,0,streams[nstreams-1]>>>(d_a, nkernels);    checkCudaErrors(cudaMemcpyAsync(a, d_a, sizeof(clock_t), cudaMemcpyDeviceToHost, streams[nstreams-1]));    // at this point the CPU has dispatched all work for the GPU and can continue processing other tasks in parallel    // in this sample we just wait until the GPU is done    checkCudaErrors(cudaEventRecord(stop_event, 0));    checkCudaErrors(cudaEventSynchronize(stop_event));    checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));    printf("Expected time for serial execution of %d kernels = %.3fs\n", nkernels, nkernels * kernel_time/1000.0f);    printf("Expected time for concurrent execution of %d kernels = %.3fs\n", nkernels, kernel_time/1000.0f);    printf("Measured time for sample = %.3fs\n", elapsed_time/1000.0f);    bool bTestResult  = (a[0] > total_clocks);    // release resources    for (int i = 0; i < nkernels; i++)    {        cudaStreamDestroy(streams[i]);        cudaEventDestroy(kernelEvent[i]);    }    free(streams);    free(kernelEvent);    cudaEventDestroy(start_event);    cudaEventDestroy(stop_event);    cudaFreeHost(a);    cudaFree(d_a);    if (!bTestResult)    {        printf("Test failed!\n");        exit(EXIT_FAILURE);    }    printf("Test passed\n");    exit(EXIT_SUCCESS);}
0 0