Java并发之线程池(三)

来源:互联网 发布:2k17德拉蒙德格林数据 编辑:程序博客网 时间:2024/05/19 12:39


一、前言

2016年即将过去,要抓紧时间,夯实java基础知识部分,为以后学习的新的知识做准备。

二、线程池基本原理图

                               

三、ThreadPoolExecutor的内部结构

 

1.Worker在里面是一个核心的内部类

 private final class Worker        extends AbstractQueuedSynchronizer        implements Runnable    {        /**         * This class will never be serialized, but we provide a         * serialVersionUID to suppress a javac warning.         */        private static final long serialVersionUID = 6138294804551838833L;        /** Thread this worker is running in.  Null if factory fails. */        final Thread thread;        /** Initial task to run.  Possibly null. */        Runnable firstTask;        /** Per-thread task counter */        volatile long completedTasks;        //...    }

构造方法

//由线程工厂创建一个任务线程        Worker(Runnable firstTask) {            setState(-1); // inhibit interrupts until runWorker            this.firstTask = firstTask;            this.thread = getThreadFactory().newThread(this);        }
部分方法:

/** 将由ThreadPoolExecutor的runWorker执行*/        public void run() {            runWorker(this);        }
2.类的属性

// 线程池的控制状态(用来表示线程池的运行状态(整形的高3位)和运行的worker数量(低29位) private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 29位的偏移量    private static final int COUNT_BITS = Integer.SIZE - 3;    // 最大容量(2^29 - 1)    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;    // runState is stored in the high-order bits    // 线程运行状态,总共有5个状态,需要3位来表示(所以偏移量的29 = 32 - 3)    private static final int RUNNING    = -1 << COUNT_BITS;    private static final int SHUTDOWN   =  0 << COUNT_BITS;    private static final int STOP       =  1 << COUNT_BITS;    private static final int TIDYING    =  2 << COUNT_BITS;    private static final int TERMINATED =  3 << COUNT_BITS;    //阻塞队列    private final BlockingQueue<Runnable> workQueue;    //主方法重入锁    private final ReentrantLock mainLock = new ReentrantLock();    //工作线程集合    private final HashSet<Worker> workers = new HashSet<Worker>();    //终止条件    private final Condition termination = mainLock.newCondition();    //最大池大小    private int largestPoolSize;    //完成任务的数量    private long completedTaskCount;    //线程工厂    private volatile ThreadFactory threadFactory;    //拒绝处理器接口    private volatile RejectedExecutionHandler handler;    //保持的时间    private volatile long keepAliveTime;    //允许线程的超时时间    private volatile boolean allowCoreThreadTimeOut;    //核心线程池的大小    private volatile int corePoolSize;    //最大线程池大小    private volatile int maximumPoolSize;    //默认拒绝处理器    private static final RejectedExecutionHandler defaultHandler =        new AbortPolicy();

3.构造方法

public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue) {        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,Executors.defaultThreadFactory(), defaultHandler);    }    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory) {        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,threadFactory, defaultHandler);    }    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler) {        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,Executors.defaultThreadFactory(), handler);    }    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {        if (corePoolSize < 0 ||            maximumPoolSize <= 0 ||            maximumPoolSize < corePoolSize ||            keepAliveTime < 0)            throw new IllegalArgumentException();        if (workQueue == null || threadFactory == null || handler == null)            throw new NullPointerException();        this.corePoolSize = corePoolSize;        this.maximumPoolSize = maximumPoolSize;        this.workQueue = workQueue;        this.keepAliveTime = unit.toNanos(keepAliveTime);        this.threadFactory = threadFactory;        this.handler = handler;    }

4.部分方法

 4.1 public void execute(Runnable command)方法

public void execute(Runnable command) {        if (command == null)            throw new NullPointerException();        /*         * 进行下面三步        *        * 1. 如果运行的线程小于corePoolSize,则尝试使用用户定义的Runnalbe对象创建一个新的线程        *     调用addWorker函数会原子性的检查runState和workCount,通过返回false来防止在不应        *     该添加线程时添加了线程        * 2. 如果一个任务能够成功入队列,在添加一个线城时仍需要进行双重检查(因为在前一次检查后        *     该线程死亡了),或者当进入到此方法时,线程池已经shutdown了,所以需要再次检查状态,        *    若有必要,当停止时还需要回滚入队列操作,或者当线程池没有线程时需要创建一个新线程        * 3. 如果无法入队列,那么需要增加一个新线程,如果此操作失败,那么就意味着线程池已经shut        *     down或者已经饱和了,所以拒绝任务         */        int c = ctl.get();        if (workerCountOf(c) < corePoolSize) {//小于核心线程池大小            if (addWorker(command, true))//新增Worker                return;            c = ctl.get();//再次获取线程状态        }        // 当线程池中的任务数量 >= "核心池大小"时,    // 而且,"线程池处于允许状态"时,则尝试将任务添加到阻塞队列中。        if (isRunning(c) && workQueue.offer(command)) {            int recheck = ctl.get();            if (! isRunning(recheck) && remove(command))                reject(command);        // 否则,如果"线程池中任务数量"为0,则通过addWorker(null, false)        //尝试新建一个线程,新建线程对应的任务为null。            else if (workerCountOf(recheck) == 0)                addWorker(null, false);        }        else if (!addWorker(command, false))//添加线程失败        //拒绝执行            reject(command);    }
4.2private boolean addWorker(Runnable firstTask, boolean core)添加工作线程

private boolean addWorker(Runnable firstTask, boolean core) {        retry:        for (;;) {            int c = ctl.get();//// 获取ctl对应的int值。该int值保存了"线程池中任务的数量"和"线程池状态"信息            int rs = runStateOf(c);//获取线程池的状态            // 对队列和状态进行检查            if (rs >= SHUTDOWN &&                ! (rs == SHUTDOWN &&                   firstTask == null &&                   ! workQueue.isEmpty()))                return false;            for (;;) {                int wc = workerCountOf(c);//线程池任务数量                if (wc >= CAPACITY ||                    wc >= (core ? corePoolSize : maximumPoolSize))//超过容量返回false                    return false;                if (compareAndIncrementWorkerCount(c))//工作线程数量增加                    break retry;                c = ctl.get();  // Re-read ctl再次获取线程池信息                if (runStateOf(c) != rs)//判断状态                    continue retry;                // else CAS failed due to workerCount change; retry inner loop            }        }        boolean workerStarted = false;        boolean workerAdded = false;        Worker w = null;        try {            final ReentrantLock mainLock = this.mainLock;            w = new Worker(firstTask);//添加工作线程            final Thread t = w.thread;            if (t != null) {                mainLock.lock();                try {                    // Recheck while holding lock.                    // Back out on ThreadFactory failure or if                    // shut down before lock acquired.                    //获取线程池的信息再次判断                    int c = ctl.get();                    int rs = runStateOf(c);                    if (rs < SHUTDOWN ||                        (rs == SHUTDOWN && firstTask == null)) {                        if (t.isAlive()) // precheck that t is startable                            throw new IllegalThreadStateException();                        workers.add(w);//添加到工作线程集合                        int s = workers.size();                        if (s > largestPoolSize)//设置最大线程池大小                            largestPoolSize = s;                        workerAdded = true;                    }                } finally {                    mainLock.unlock();                }                if (workerAdded) {//添加成功                    t.start();//运行                    workerStarted = true;//设置工作线程的状态                }            }        } finally {            if (! workerStarted)//如果失败                addWorkerFailed(w);//线程集合将会移除工作线程并将线程池的数量减1        }        return workerStarted;//返回工作线程运行的状态    }

4.3private void addWorkerFailed(Worker w)  线程启动失败

private void addWorkerFailed(Worker w)  线程启动失败    private void addWorkerFailed(Worker w) {        final ReentrantLock mainLock = this.mainLock;        mainLock.lock();        try {         //线程集合将会移除工作线程并将线程池的数量减1            if (w != null)                workers.remove(w);            decrementWorkerCount();            tryTerminate();        } finally {            mainLock.unlock();        }    }
4.4线程池关闭相关的方法

/**     依次的关闭线程,之前已提交的任务将会执行完成,但是不会接受新的任务,     如果已关闭再次调用不会有额外的影响。     */    public void shutdown() {        final ReentrantLock mainLock = this.mainLock;        mainLock.lock();        try {            checkShutdownAccess();//检查关闭的权限            advanceRunState(SHUTDOWN);//设置关闭            interruptIdleWorkers();中断空闲的工作线程            onShutdown(); // hook for ScheduledThreadPoolExecutor        } finally {            mainLock.unlock();        }        tryTerminate();    }    /**       试图去停止所有的运行的线程,终止所有等待的任务,并将等待的任务用集合返回,       清空任务队列的信息并返回。     */    public List<Runnable> shutdownNow() {        List<Runnable> tasks;        final ReentrantLock mainLock = this.mainLock;        mainLock.lock();        try {            checkShutdownAccess();//检查关闭权限            advanceRunState(STOP);设置停止            interruptWorkers();//中断所有线程            tasks = drainQueue();//释放队列并返回未执行的任务        } finally {            mainLock.unlock();        }        tryTerminate();        return tasks;    }    public boolean isShutdown() {        return ! isRunning(ctl.get()); //检查线程池是否关闭    }
//中断所有空闲线程    private void interruptIdleWorkers(boolean onlyOne) {        final ReentrantLock mainLock = this.mainLock;        mainLock.lock();        try {            for (Worker w : workers) {                Thread t = w.thread;                if (!t.isInterrupted() && w.tryLock()) {                    try {                        t.interrupt();//中断线程                    } catch (SecurityException ignore) {                    } finally {                        w.unlock();                    }                }                if (onlyOne)                    break;            }        } finally {            mainLock.unlock();        }    }    //清空队列并返回    private List<Runnable> drainQueue() {        BlockingQueue<Runnable> q = workQueue;        List<Runnable> taskList = new ArrayList<Runnable>();//返回list集合        q.drainTo(taskList);        if (!q.isEmpty()) {            for (Runnable r : q.toArray(new Runnable[0])) {                if (q.remove(r))//移除                    taskList.add(r);            }        }        return taskList;    }
 //中断所有线程     private void interruptWorkers() {        final ReentrantLock mainLock = this.mainLock;        mainLock.lock();        try {            for (Worker w : workers)                w.interruptIfStarted();        } finally {            mainLock.unlock();        }    }


四、总结

       线程池的设计非常的好,更重要的是理解其中的设计思想和原理。






0 0
原创粉丝点击