Lk启动流程分析

来源:互联网 发布:淘宝韩国正品女装 编辑:程序博客网 时间:2024/05/17 08:06

1 Lk概述

LK是(L)ittle(K)ernel的缩写。目前android平台普遍采用lk作为其bootloader,LK是一个开源项目。但是,LK只是整个系统的引导部分,所以它不是独立存在。LK是一个功能及其强大的bootloader,但现在只支持arm和x86平台。
LK的一个显著的特点就是它实现了一个简单的线程机制(thread),和对高通处理器的深度定制和使用。

2 源代码目录

app //主函数启动app执行的目录,第一个app在app/aboot/aboot.c中
arch //体系代码包含x86和arm
dev //设备目录,包含显示器,键盘,net,usb等设备的初始化代码
include //头文件
kernel //kernel/main.c主函数以及kernel/thread.c线程函数
lib //库文件
make //编译规则
platform //不同平台代码mdmxxx,msmxxx,apqxxx,qsdxxx,还有共享的目录msm_shared
project //整个工程的编译规则
target //通用init.c,具体目标板的初始化(主要为板子设备资源init.c代码中)

3 Lk入口

3.1 bootable\bootloader\lk\arch\arm\rule.mk文件下相关部分:

# potentially generated files that should be cleaned out with clean make ruleGENERATED += \    $(BUILDDIR)/system-onesegment.ld \    $(BUILDDIR)/system-twosegment.ld# rules for generating the linker scripts$(BUILDDIR)/trustzone-test-system-onesegment.ld: $(LOCAL_DIR)/trustzone-test-system-onesegment.ld $(LK_TOP_DIR)/target/$(TARGET)/rules.mk .FORCE    @echo generating $@    @$(MKDIR)    $(NOECHO)sed "s/%MEMBASE%/$(MEMBASE)/;s/%MEMSIZE%/$(MEMSIZE)/;s/%ROMLITE_PREFLASHED_DATA%/$(ROMLITE_PREFLASHED_DATA)/" < $< > $@$(BUILDDIR)/trustzone-system-onesegment.ld: $(LOCAL_DIR)/trustzone-system-onesegment.ld $(LK_TOP_DIR)/target/$(TARGET)/rules.mk .FORCE    @echo generating $@    @$(MKDIR)    $(NOECHO)sed "s/%MEMBASE%/$(MEMBASE)/;s/%MEMSIZE%/$(MEMSIZE)/" < $< > $@$(BUILDDIR)/system-onesegment.ld: $(LOCAL_DIR)/system-onesegment.ld $(LK_TOP_DIR)/target/$(TARGET)/rules.mk .FORCE    @echo generating $@    @$(MKDIR)    $(NOECHO)sed "s/%MEMBASE%/$(MEMBASE)/;s/%MEMSIZE%/$(MEMSIZE)/" < $< > $@$(BUILDDIR)/system-twosegment.ld: $(LOCAL_DIR)/system-twosegment.ld $(LK_TOP_DIR)/target/$(TARGET)/rules.mk .FORCE    @echo generating $@    @$(MKDIR)    $(NOECHO)sed "s/%ROMBASE%/$(ROMBASE)/;s/%MEMBASE%/$(MEMBASE)/;s/%MEMSIZE%/$(MEMSIZE)/" < $< > $@

3.2 arch/arm/system-onesegment.ld

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")OUTPUT_ARCH(arm)ENTRY(_start)   /*跳入crt0.S文件执行代码*/3.3 arch/arm/crt0.S.section ".text.boot".globl _start_start:    b   reset    b   arm_undefined    b   arm_syscall    b   arm_prefetch_abort    b   arm_data_abort    b   arm_reserved    b   arm_irq    b   arm_fiqreset:……    bl      kmain    b       ……

4 kmain函数

bootable/bootloader/lk/kernel/main.c

/* called from crt0.S */void kmain(void) __NO_RETURN __EXTERNALLY_VISIBLE;void kmain(void){    // get us into some sort of thread context    thread_init_early();        //初始化线程上下文    // early arch stuff    arch_early_init();      //架构初始化,如关闭cache,使能mmu    // do any super early platform initialization    platform_early_init();  //平台早期初始化    // do any super early target initialization    target_early_init();        //目标设备早期初始化,初始化串口    dprintf(INFO, "welcome to lk\n\n");    bs_set_timestamp(BS_BL_START);    // deal with any static constructors    dprintf(SPEW, "calling constructors\n");    call_constructors();    // bring up the kernel heap    dprintf(SPEW, "initializing heap\n");    heap_init();            //堆初始化    __stack_chk_guard_setup();    // initialize the threading system    dprintf(SPEW, "initializing threads\n");    thread_init();          //线程初始化    // initialize the dpc system    dprintf(SPEW, "initializing dpc\n");    dpc_init();         //lk系统控制器初始化    // initialize kernel timers    dprintf(SPEW, "initializing timers\n");    timer_init();           //kernel时钟初始化#if (!ENABLE_NANDWRITE)    // create a thread to complete system initialization    dprintf(SPEW, "creating bootstrap completion thread\n");    thread_resume(thread_create("bootstrap2", &bootstrap2, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));        //创建一个线程初始化系统    // enable interrupts    exit_critical_section();        //使能中断    // become the idle thread    thread_become_idle();       //本线程切换成idle线程,idle为空闲线程,当没有更高优先级的线程时才执行#else        bootstrap_nandwrite();#endif}

4.1 arch_early_init函数

bootable/bootloader/lk/arch/arm/arch.c

void arch_early_init(void){    /* turn off the cache */    arch_disable_cache(UCACHE); //关闭cache    /* set the vector base to our exception vectors so we dont need to double map at 0 */#if ARM_CPU_CORTEX_A8    set_vector_base(MEMBASE);   //设置异常向量基地址#endif#if ARM_WITH_MMU    arm_mmu_init();             //mmu初始化#endif    /* turn the cache back on */    arch_enable_cache(UCACHE);  //使能cache#if ARM_WITH_NEON    /* enable cp10 and cp11 */    uint32_t val;    __asm__ volatile("mrc   p15, 0, %0, c1, c0, 2" : "=r" (val));    val |= (3<<22)|(3<<20);    __asm__ volatile("mcr   p15, 0, %0, c1, c0, 2" :: "r" (val));    isb();    /* set enable bit in fpexc */    __asm__ volatile("mrc  p10, 7, %0, c8, c0, 0" : "=r" (val));    val |= (1<<30);    __asm__ volatile("mcr  p10, 7, %0, c8, c0, 0" :: "r" (val));#endif#if ARM_CPU_CORTEX_A8    /* enable the cycle count register */    uint32_t en;    __asm__ volatile("mrc   p15, 0, %0, c9, c12, 0" : "=r" (en));    en &= ~(1<<3); /* cycle count every cycle */    en |= 1; /* enable all performance counters */    __asm__ volatile("mcr   p15, 0, %0, c9, c12, 0" :: "r" (en));    /* enable cycle counter */    en = (1<<31);    __asm__ volatile("mcr   p15, 0, %0, c9, c12, 1" :: "r" (en));#endif}

4.2 platform_early_init函数

bootable/bootloader/lk/platform/msm8953/platform.c

void platform_early_init(void){    board_init();   //主板初始化    platform_clock_init();  //平台时钟初始化    qgic_init();    //中断控制器初始化    qtimer_init();  //定时器初始化    scm_init(); //}

4.3 target_early_init函数

bootable/bootloader/lk/ target/msm8953/init.c

void target_early_init(void){#if WITH_DEBUG_UART     uart_dm_init(1, 0, BLSP1_UART0_BASE);  //串口初始化#endif}5. timer_init函数bootable/bootloader/lk/ kernel/timer.cvoid timer_init(void){    list_initialize(&timer_queue);    /* register for a periodic timer tick */    platform_set_periodic_timer(timer_tick, NULL, 10); /* 10ms */}

4.4 bootstrap2函数分析

bootable/bootloader/lk/kernel/main.c

static int bootstrap2(void *arg){    dprintf(SPEW, "top of bootstrap2()\n");    arch_init();    //架构初始化,空函数    // XXX put this somewhere else#if WITH_LIB_BIO    bio_init();#endif#if WITH_LIB_FS    fs_init();#endif    // initialize the rest of the platform    dprintf(SPEW, "initializing platform\n");    platform_init();    //板级设备初始化,空函数    // initialize the target    dprintf(SPEW, "initializing target\n");    target_init();      //目标设备初始化,见1.1    dprintf(SPEW, "calling apps_init()\n");    apps_init();        //lk应用初始化,见1.2    return 0;}

4.4.1 target_init函数

bootable/bootloader/lk/target/msm8953/init.c

void target_init(void){#if VERIFIED_BOOT#if !VBOOT_MOTA    int ret = 0;#endif#endif    dprintf(INFO, "target_init()\n");    spmi_init(PMIC_ARB_CHANNEL_NUM, PMIC_ARB_OWNER_ID); //初始化spmi 控制器    target_keystatus();    target_sdc_init();      //sd card 初始化,内部包含了mmc的初始化    if (partition_read_table())     //读取分区表    {        dprintf(CRITICAL, "Error reading the partition table info\n");        ASSERT(0);    }#if LONG_PRESS_POWER_ON    shutdown_detect();#endif#if PON_VIB_SUPPORT    vib_timed_turn_on(VIBRATE_TIME);#endif    if (target_use_signed_kernel())        target_crypto_init_params();#if VERIFIED_BOOT#if !VBOOT_MOTA    clock_ce_enable(CE1_INSTANCE);    /* Initialize Qseecom */    ret = qseecom_init();   //qse 初始化    if (ret < 0)    {        dprintf(CRITICAL, "Failed to initialize qseecom, error: %d\n", ret);        ASSERT(0);    }    /* Start Qseecom */    ret = qseecom_tz_init(); //qse tz初始化    if (ret < 0)    {        dprintf(CRITICAL, "Failed to start qseecom, error: %d\n", ret);        ASSERT(0);    }    if (rpmb_init() < 0)  //rpmb 初始化(Replay Protected Memory Block,emmc中的一个分区,总共五个分区:BOOT Area Partition 1,BOOT Area Partition 2,RPMB,User Data Area,Vender private area)    {        dprintf(CRITICAL, "RPMB init failed\n");        ASSERT(0);    }    /*     * Load the sec app for first time     */    if (load_sec_app() < 0)         //加载安全app    {        dprintf(CRITICAL, "Failed to load App for verified\n");        ASSERT(0);    }#endif#endif#if SMD_SUPPORT    rpm_smd_init(); //smd 初始化#endif}

4.4.2 apps_init函数

bootable/bootloader/lk/ app/app.c

void apps_init(void){    const struct app_descriptor *app;    /* call all the init routines */    for (app = &__apps_start; app != &__apps_end; app++) {        if (app->init)            app->init(app);    }    /* start any that want to start on boot */    for (app = &__apps_start; app != &__apps_end; app++) {        if (app->entry && (app->flags & APP_FLAG_DONT_START_ON_BOOT) == 0) {            start_app(app);        }    }}代码段:for (app = &__apps_start; app != &__apps_end; app++) {        if (app->init)            app->init(app);    }表示进入各自的app init函数,通过下面的代码段可以分析出具体有哪些app init函数。bootable/bootloader/lk/ arch/arm/system-onesegment.ld.rodata : {       ……..        __apps_start = .;        KEEP (*(.apps))        __apps_end = .;       ……..}bootable/bootloader/lk/ include/app.hstruct app_descriptor {    const char *name;    app_init  init;    app_entry entry;    unsigned int flags;};#define APP_START(appname) struct app_descriptor _app_##appname __SECTION(".apps") = { .name = #appname,#define APP_END };bootable/bootloader/lk/app/aboot/aboot.cAPP_START(aboot)    .init = aboot_init,APP_END上面的过程表示了如何将aboot模块的aboot_init函数加入到.apps代码段。这种方式也用在clocktests 、shell、pcitests、stringtests、tests模块中,请参见一下文件:bootable/bootloader/lk/app/clocktests/clock_tests.c:APP_START(clocktests)bootable/bootloader/lk/app/aboot/aboot.c:APP_START(aboot)bootable/bootloader/lk/app/shell/shell.c:APP_START(shell)bootable/bootloader/lk/app/pcitests/pci_tests.c:APP_START(pcitests)bootable/bootloader/lk/app/stringtests/string_tests.c:APP_START(stringtests)bootable/bootloader/lk/app/tests/tests.c:APP_START(tests)

5 aboot_init函数分析

/bootable/bootloader/lk/app/aboot/aboot.c

void aboot_init(const struct app_descriptor *app){    unsigned reboot_mode = 0;    /* Initialise wdog to catch early lk crashes */#if WDOG_SUPPORT    msm_wdog_init();        //看门狗初始化#endif    /* Setup page size information for nv storage */    if (target_is_emmc_boot())      //检测是emmc还是flash存储,并设置页大小,一般是2048    {        page_size = mmc_page_size();        page_mask = page_size - 1;        mmc_blocksize = mmc_get_device_blocksize();        mmc_blocksize_mask = mmc_blocksize - 1;    }    else    {        page_size = flash_page_size();        page_mask = page_size - 1;    }    ASSERT((MEMBASE + MEMSIZE) > MEMBASE);    read_device_info(&device);          //读取device info分区的信息到device结构体中    read_allow_oem_unlock(&device); //devinfo分区里记录了unlock状态,从device中读取此信息    /* Display splash screen if enabled */#if DISPLAY_SPLASH_SCREEN#if NO_ALARM_DISPLAY    if (!check_alarm_boot()) {      //判断是否是因为闹钟导致的重启#endif        dprintf(SPEW, "Display Init: Start\n");#if ENABLE_WBC        /* Wait if the display shutdown is in progress */        while(pm_app_display_shutdown_in_prgs());        if (!pm_appsbl_display_init_done())            target_display_init(device.display_panel);        else            display_image_on_screen();#else        target_display_init(device.display_panel);  //显示splash,Splash也就是应用程序启动之前先启动一个画面,上面简单的介绍应用程序的厂商,厂商的LOGO,名称和版本等信息,多为一张图片#endif        dprintf(SPEW, "Display Init: Done\n");#if NO_ALARM_DISPLAY    }#endif#endif    target_serialno((unsigned char *) sn_buf);      //读取序列号    dprintf(SPEW,"serial number: %s\n",sn_buf);    memset(display_panel_buf, '\0', MAX_PANEL_BUF_SIZE);    /*     * Check power off reason if user force reset,     * if yes phone will do normal boot.     */    if (is_user_force_reset())      //判断是否是用户设置的重启        goto normal_boot;/* Check if we should do something other than booting up *///判断是否进入各种模式    if (keys_get_state(KEY_VOLUMEUP) && keys_get_state(KEY_VOLUMEDOWN))    {        dprintf(ALWAYS,"dload mode key sequence detected\n");        reboot_device(EMERGENCY_DLOAD);        dprintf(CRITICAL,"Failed to reboot into dload mode\n");        boot_into_fastboot = true;    }    if (!boot_into_fastboot)    {        if (keys_get_state(KEY_HOME) || keys_get_state(KEY_VOLUMEUP))            boot_into_recovery = 1;        if (!boot_into_recovery &&            (keys_get_state(KEY_BACK) || keys_get_state(KEY_VOLUMEDOWN)))            boot_into_fastboot = true;    }    #if NO_KEYPAD_DRIVER    if (fastboot_trigger())        boot_into_fastboot = true;    #endif#if USE_PON_REBOOT_REG    reboot_mode = check_hard_reboot_mode();#else    reboot_mode = check_reboot_mode();#endifif (reboot_mode == RECOVERY_MODE){        boot_into_recovery = 1;    }    else if(reboot_mode == FASTBOOT_MODE)    {        boot_into_fastboot = true;    }    else if(reboot_mode == ALARM_BOOT)    {        boot_reason_alarm = true;    }#if VERIFIED_BOOT#if !VBOOT_MOTA    else if (reboot_mode == DM_VERITY_ENFORCING)    {        device.verity_mode = 1;        write_device_info(&device);    }    else if (reboot_mode == DM_VERITY_LOGGING)    {        device.verity_mode = 0;        write_device_info(&device);    }    else if (reboot_mode == DM_VERITY_KEYSCLEAR)    {        if(send_delete_keys_to_tz())            ASSERT(0);    }#endif#endifnormal_boot:    if (!boot_into_fastboot)    {        if (target_is_emmc_boot())        {            if(emmc_recovery_init())                dprintf(ALWAYS,"error in emmc_recovery_init\n");            if(target_use_signed_kernel())            {                if((device.is_unlocked) || (device.is_tampered))                {                #ifdef TZ_TAMPER_FUSE                    set_tamper_fuse_cmd();                #endif                #if USE_PCOM_SECBOOT                    set_tamper_flag(device.is_tampered);                #endif                }            }            boot_linux_from_mmc();  //跳入linux kernel启动,后面深入分析        }        else        {            recovery_init();    #if USE_PCOM_SECBOOT        if((device.is_unlocked) || (device.is_tampered))            set_tamper_flag(device.is_tampered);    #endif            boot_linux_from_flash();    //跳入linux kernel启动,后面深入分析        }        dprintf(CRITICAL, "ERROR: Could not do normal boot. Reverting "            "to fastboot mode.\n");    }    /* We are here means regular boot did not happen. Start fastboot. */    /* register aboot specific fastboot commands */    aboot_fastboot_register_commands();    /* dump partition table for debug info */    partition_dump();    /* initialize and start fastboot */    fastboot_init(target_get_scratch_address(), target_get_max_flash_size());#if FBCON_DISPLAY_MSG    display_fastboot_menu();    //显示fastboot菜单#endif}

5.1 read_device_info函数分析

  1. device_info结构体
    bootable/bootloader/lk/ app/aboot/devinfo.h
struct device_info{    unsigned char magic[DEVICE_MAGIC_SIZE];    bool is_unlocked;    bool is_tampered;    bool is_unlock_critical;    bool charger_screen_enabled;    char display_panel[MAX_PANEL_ID_LEN];    char bootloader_version[MAX_VERSION_LEN];    char radio_version[MAX_VERSION_LEN];};

2 read_device_info函数
bootable/bootloader/lk/ app/aboot/aboot.c

void read_device_info(device_info *dev){    if(target_is_emmc_boot())    {        struct device_info *info = memalign(PAGE_SIZE, ROUNDUP(BOOT_IMG_MAX_PAGE_SIZE, PAGE_SIZE));     //开辟一片内存,其大小是对齐的倍数,必须是2的幂        if(info == NULL)        {            dprintf(CRITICAL, "Failed to allocate memory for device info struct\n");            ASSERT(0);        }        info_buf = info;#if USE_RPMB_FOR_DEVINFO            //从rpmb中读取devinfo        if (is_secure_boot_enable()) {            if((read_device_info_rpmb((void*) info, PAGE_SIZE)) < 0)                ASSERT(0);        }        else            read_device_info_mmc(info);#else        read_device_info_mmc(info);     //从mmc中读取devinfo#endif        if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE))        {            memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE);            if (is_secure_boot_enable()) {  //是否为安全启动                info->is_unlocked = 0;#if !VBOOT_MOTA                info->is_unlock_critical = 0;#endif            } else {                info->is_unlocked = 1;#if !VBOOT_MOTA                info->is_unlock_critical = 1;#endif            }            info->is_tampered = 0;            info->charger_screen_enabled = 0;#if !VBOOT_MOTA            info->verity_mode = 1; //enforcing by default#endif            write_device_info(info);        }        memcpy(dev, info, sizeof(device_info)); //回写devinfo        free(info);    }    else    {        read_device_info_flash(dev);        //从flash中读取devinfo    }}

5.2 boot_linux_from_mmc分析

/bootable/bootloader/lk/app/aboot/aboot.c

int boot_linux_from_mmc(void){// buf由前面BUF_DMA_ALIGN(buf, BOOT_IMG_MAX_PAGE_SIZE); 表示声明一个buf数组,并将boot img copy到其中    //Equal to max-supported pagesizestruct boot_img_hdr *hdr = (void*) buf;    struct boot_img_hdr *uhdr;    unsigned offset = 0;    int rcode;    unsigned long long ptn = 0;    int index = INVALID_PTN;    unsigned char *image_addr = 0;    unsigned kernel_actual;    unsigned ramdisk_actual;    unsigned imagesize_actual;    unsigned second_actual = 0;    unsigned int dtb_size = 0;    unsigned int out_len = 0;    unsigned int out_avai_len = 0;    unsigned char *out_addr = NULL;    uint32_t dtb_offset = 0;    unsigned char *kernel_start_addr = NULL;    unsigned int kernel_size = 0;    int rc;#if DEVICE_TREE    struct dt_table *table;    struct dt_entry dt_entry;    unsigned dt_table_offset;    uint32_t dt_actual;    uint32_t dt_hdr_size;    unsigned char *best_match_dt_addr = NULL;#endif    struct kernel64_hdr *kptr = NULL;    if (check_format_bit()) //查找bootselect分区,并判断其是否存在相应的标志位,否则返回false        boot_into_recovery = 1;    if (!boot_into_recovery) {        memset(ffbm_mode_string, '\0', sizeof(ffbm_mode_string));        rcode = get_ffbm(ffbm_mode_string, sizeof(ffbm_mode_string));        if (rcode <= 0) {            boot_into_ffbm = false;            if (rcode < 0)                dprintf(CRITICAL,"failed to get ffbm cookie");        } else            boot_into_ffbm = true;    } else        boot_into_ffbm = false;    //有前面定义确定uhdr的位置    uhdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR;    if (!memcmp(uhdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {//校验magic是否为"ANDROID! "        dprintf(INFO, "Unified boot method!\n");        hdr = uhdr; //将uhdr的值赋给hdr,即buf        goto unified_boot;    }    if (!boot_into_recovery) {  //正常启动        index = partition_get_index("boot");        ptn = partition_get_offset(index);        if(ptn == 0) {            dprintf(CRITICAL, "ERROR: No boot partition found\n");                    return -1;        }    }    else {        index = partition_get_index("recovery");//进入recovery模式        ptn = partition_get_offset(index);        if(ptn == 0) {            dprintf(CRITICAL, "ERROR: No recovery partition found\n");                    return -1;        }    }    /* Set Lun for boot & recovery partitions */    mmc_set_lun(partition_get_lun(index));    if (mmc_read(ptn + offset, (uint32_t *) buf, page_size)) {  //将bootimg读取到buf中        dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");                return -1;    }    if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {//校验        dprintf(CRITICAL, "ERROR: Invalid boot image header\n");                return -1;    }    if (hdr->page_size && (hdr->page_size != page_size)) {        if (hdr->page_size > BOOT_IMG_MAX_PAGE_SIZE) {            dprintf(CRITICAL, "ERROR: Invalid page size\n");            return -1;        }        page_size = hdr->page_size;      page_mask = page_size - 1;    }    /* ensure commandline is terminated */    hdr->cmdline[BOOT_ARGS_SIZE-1] = 0;    kernel_actual  = ROUND_TO_PAGE(hdr->kernel_size,  page_mask);   //kernel所占页的总大小    ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);   //ramdisk所占页的总大小    image_addr = (unsigned char *)target_get_scratch_address();#if DEVICE_TREE    dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask); //dt所占页的总大小    imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);    //image所占页的总大小#else    imagesize_actual = (page_size + kernel_actual + ramdisk_actual);#endif#if VERIFIED_BOOT    boot_verifier_init();       //校验boot#endif    if (check_aboot_addr_range_overlap((uintptr_t) image_addr, imagesize_actual))   //aboot和bootimage地址是否重合    {        dprintf(CRITICAL, "Boot image buffer address overlaps with aboot addresses.\n");        return -1;    }    /*     * Update loading flow of bootimage to support compressed/uncompressed     * bootimage on both 64bit and 32bit platform.     * 1. Load bootimage from emmc partition onto DDR.     * 2. Check if bootimage is gzip format. If yes, decompress compressed kernel     * 3. Check kernel header and update kernel load addr for 64bit and 32bit     *    platform accordingly.     * 4. Sanity Check on kernel_addr and ramdisk_addr and copy data.     */    dprintf(INFO, "Loading (%s) image (%d): start\n",            (!boot_into_recovery ? "boot" : "recovery"),imagesize_actual);    bs_set_timestamp(BS_KERNEL_LOAD_START);    if ((target_get_max_flash_size() - page_size) < imagesize_actual)//判断image能否完全放入ddr    {        dprintf(CRITICAL, "booimage  size is greater than DDR can hold\n");      return -1;    }    /* Read image without signature */    if (mmc_read(ptn + offset, (void *)image_addr, imagesize_actual))    {        dprintf(CRITICAL, "ERROR: Cannot read boot image\n");        return -1;    }    dprintf(INFO, "Loading (%s) image (%d): done\n",            (!boot_into_recovery ? "boot" : "recovery"),imagesize_actual);    bs_set_timestamp(BS_KERNEL_LOAD_DONE);    /* Authenticate Kernel */    dprintf(INFO, "use_signed_kernel=%d, is_unlocked=%d, is_tampered=%d.\n",        (int) target_use_signed_kernel(),        device.is_unlocked,        device.is_tampered);    /* Change the condition a little bit to include the test framework support.     * We would never reach this point if device is in fastboot mode, even if we did     * that means we are in test mode, so execute kernel authentication part for the     * tests */    if((target_use_signed_kernel() && (!device.is_unlocked)) || is_test_mode_enabled())    {        offset = imagesize_actual;        if (check_aboot_addr_range_overlap((uintptr_t)image_addr + offset, page_size))        {            dprintf(CRITICAL, "Signature read buffer address overlaps with aboot addresses.\n");            return -1;        }        /* Read signature */        if(mmc_read(ptn + offset, (void *)(image_addr + offset), page_size))        {            dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n");            return -1;        }        verify_signed_bootimg((uint32_t)image_addr, imagesize_actual);//校验bootimg        /* The purpose of our test is done here */        if(is_test_mode_enabled() && auth_kernel_img)            return 0;   } else {        second_actual  = ROUND_TO_PAGE(hdr->second_size,  page_mask);   //second_size所占页的总大小        #ifdef TZ_SAVE_KERNEL_HASH        aboot_save_boot_hash_mmc((uint32_t) image_addr, imagesize_actual);        #endif /* TZ_SAVE_KERNEL_HASH */#ifdef MDTP_SUPPORT        {            /* Verify MDTP lock.             * For boot & recovery partitions, MDTP will use boot_verifier APIs,             * since verification was skipped in aboot. The signature is not part of the loaded image.             */            mdtp_ext_partition_verification_t ext_partition;            ext_partition.partition = boot_into_recovery ? MDTP_PARTITION_RECOVERY : MDTP_PARTITION_BOOT;            ext_partition.integrity_state = MDTP_PARTITION_STATE_UNSET;            ext_partition.page_size = page_size;            ext_partition.image_addr = (uint32)image_addr;            ext_partition.image_size = imagesize_actual;            ext_partition.sig_avail = FALSE;            mdtp_fwlock_verify_lock(&ext_partition);        }#endif /* MDTP_SUPPORT */    }#if VERIFIED_BOOT    if(boot_verify_get_state() == ORANGE)    {#if FBCON_DISPLAY_MSG        display_bootverify_menu(DISPLAY_MENU_ORANGE);        wait_for_users_action();#else        dprintf(CRITICAL,            "Your device has been unlocked and can't be trusted.\nWait for 5 seconds before proceeding\n");        mdelay(5000);#endif    }#endif#if VERIFIED_BOOT#if !VBOOT_MOTA    // send root of trust    if(!send_rot_command((uint32_t)device.is_unlocked))        ASSERT(0);#endif#endif    /*     * Check if the kernel image is a gzip package. If yes, need to decompress it.     * If not, continue booting.     */    if (is_gzip_package((unsigned char *)(image_addr + page_size), hdr->kernel_size))   //判断内核格式并解压    {        out_addr = (unsigned char *)(image_addr + imagesize_actual + page_size);        out_avai_len = target_get_max_flash_size() - imagesize_actual - page_size;        dprintf(INFO, "decompressing kernel image: start\n");        rc = decompress((unsigned char *)(image_addr + page_size),                hdr->kernel_size, out_addr, out_avai_len,                &dtb_offset, &out_len);        if (rc)        {            dprintf(CRITICAL, "decompressing kernel image failed!!!\n");            ASSERT(0);        }        dprintf(INFO, "decompressing kernel image: done\n");        kptr = (struct kernel64_hdr *)out_addr;        kernel_start_addr = out_addr;        kernel_size = out_len;    } else {        kptr = (struct kernel64_hdr *)(image_addr + page_size);        kernel_start_addr = (unsigned char *)(image_addr + page_size);        kernel_size = hdr->kernel_size;    }    /*     * Update the kernel/ramdisk/tags address if the boot image header     * has default values, these default values come from mkbootimg when     * the boot image is flashed using fastboot flash:raw     */    update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr));    //更新kernel/ramdisk/tags地址    /* Get virtual addresses since the hdr saves physical addresses. */    hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr));  //转换为虚拟地址    hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr));    hdr->tags_addr = VA((addr_t)(hdr->tags_addr));    kernel_size = ROUND_TO_PAGE(kernel_size,  page_mask);    /* Check if the addresses in the header are valid. */    if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_size) ||        check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)){        dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");        return -1;    }#ifndef DEVICE_TREE    if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))    {        dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");        return -1;    }#endif    /* Move kernel, ramdisk and device tree to correct address */    memmove((void*) hdr->kernel_addr, kernel_start_addr, kernel_size); //移动kernel, ramdisk and device tree到相应的地址    memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size);    #if DEVICE_TREE    if(hdr->dt_size) {        dt_table_offset = ((uint32_t)image_addr + page_size + kernel_actual + ramdisk_actual + second_actual);        table = (struct dt_table*) dt_table_offset;        if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {            dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");            return -1;        }        /* Its Error if, dt_hdr_size (table->num_entries * dt_entry size + Dev_Tree Header)        goes beyound hdr->dt_size*/        if (dt_hdr_size > ROUND_TO_PAGE(hdr->dt_size,hdr->page_size)) {            dprintf(CRITICAL, "ERROR: Invalid Device Tree size \n");            return -1;        }        /* Find index of device tree within device tree table */        if(dev_tree_get_entry_info(table, &dt_entry) != 0){            dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");            return -1;        }        if(dt_entry.offset > (UINT_MAX - dt_entry.size)) {            dprintf(CRITICAL, "ERROR: Device tree contents are Invalid\n");            return -1;        }        /* Ensure we are not overshooting dt_size with the dt_entry selected */        if ((dt_entry.offset + dt_entry.size) > hdr->dt_size) {            dprintf(CRITICAL, "ERROR: Device tree contents are Invalid\n");            return -1;        }        if (is_gzip_package((unsigned char *)dt_table_offset + dt_entry.offset, dt_entry.size))        {            unsigned int compressed_size = 0;            out_addr += out_len;            out_avai_len -= out_len;            dprintf(INFO, "decompressing dtb: start\n");            rc = decompress((unsigned char *)dt_table_offset + dt_entry.offset,                    dt_entry.size, out_addr, out_avai_len,                    &compressed_size, &dtb_size);            if (rc)            {                dprintf(CRITICAL, "decompressing dtb failed!!!\n");                ASSERT(0);            }            dprintf(INFO, "decompressing dtb: done\n");            best_match_dt_addr = out_addr;        } else {            best_match_dt_addr = (unsigned char *)dt_table_offset + dt_entry.offset;            dtb_size = dt_entry.size;        }        /* Validate and Read device device tree in the tags_addr */        if (check_aboot_addr_range_overlap(hdr->tags_addr, dtb_size))        {            dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");            return -1;        }        memmove((void *)hdr->tags_addr, (char *)best_match_dt_addr, dtb_size);    } else {        /* Validate the tags_addr */        if (check_aboot_addr_range_overlap(hdr->tags_addr, kernel_actual))        {            dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");            return -1;        }        /*         * If appended dev tree is found, update the atags with         * memory address to the DTB appended location on RAM.         * Else update with the atags address in the kernel header         */        void *dtb;        dtb = dev_tree_appended((void*)(image_addr + page_size),                    hdr->kernel_size, dtb_offset,                    (void *)hdr->tags_addr);        if (!dtb) {            dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n");            return -1;        }    }    #endif    if (boot_into_recovery && !device.is_unlocked && !device.is_tampered)        target_load_ssd_keystore();unified_boot:    boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr,           (const char *)hdr->cmdline, board_machtype(),           (void *)hdr->ramdisk_addr, hdr->ramdisk_size);    return 0;}

主要完成的工作:
1.将uhdr存入hdr/buf
2.读取bootimg到内存buf/hdr中
3.判断内核是否为gzip格式,如果是则解压
4.boot linux并通过boot_linux函数传递内核的地址,tags的地址,命令行参数,ramdisk地址和大小

5.2.1 boot_img_hdr结构分析

boot_img_hdr主要存储了bootimg、ramdisk、dt的地址
bootable/bootloader/lk /app/aboot/bootimg.h

#ifndef _BOOT_IMAGE_H_#define _BOOT_IMAGE_H_typedef struct boot_img_hdr boot_img_hdr;#define BOOT_MAGIC "ANDROID!"#define BOOT_MAGIC_SIZE 8#define BOOT_NAME_SIZE  16#define BOOT_ARGS_SIZE  512#define BOOT_IMG_MAX_PAGE_SIZE 4096struct boot_img_hdr{    unsigned char magic[BOOT_MAGIC_SIZE];    unsigned kernel_size;  /* size in bytes */    unsigned kernel_addr;  /* physical load addr */    unsigned ramdisk_size; /* size in bytes */    unsigned ramdisk_addr; /* physical load addr */    unsigned second_size;  /* size in bytes */    unsigned second_addr;  /* physical load addr */    unsigned tags_addr;    /* physical addr for kernel tags */    unsigned page_size;    /* flash page size we assume */    unsigned dt_size;      /* device_tree in bytes */    unsigned unused;    /* future expansion: should be 0 */    unsigned char name[BOOT_NAME_SIZE]; /* asciiz product name */    unsigned char cmdline[BOOT_ARGS_SIZE];    unsigned id[8]; /* timestamp / checksum / sha1 / etc */};/*** +-----------------+** | boot header     | 1 page** +-----------------+** | kernel          | n pages** +-----------------+** | ramdisk         | m pages** +-----------------+** | second stage    | o pages** +-----------------+** | device tree     | p pages** +-----------------+**** n = (kernel_size + page_size - 1) / page_size** m = (ramdisk_size + page_size - 1) / page_size** o = (second_size + page_size - 1) / page_size** p = (dt_size + page_size - 1) / page_size** 0. all entities are page_size aligned in flash** 1. kernel and ramdisk are required (size != 0)** 2. second is optional (second_size == 0 -> no second)** 3. load each element (kernel, ramdisk, second) at**    the specified physical address (kernel_addr, etc)** 4. prepare tags at tag_addr.  kernel_args[] is**    appended to the kernel commandline in the tags.** 5. r0 = 0, r1 = MACHINE_TYPE, r2 = tags_addr** 6. if second_size != 0: jump to second_addr**    else: jump to kernel_addr*/boot_img_hdr *mkbootimg(void *kernel, unsigned kernel_size,                        void *ramdisk, unsigned ramdisk_size,                        void *second, unsigned second_size,                        unsigned page_size,                        unsigned *bootimg_size);void bootimg_set_cmdline(boot_img_hdr *hdr, const char *cmdline);#define KERNEL64_HDR_MAGIC 0x644D5241 /* ARM64 */struct kernel64_hdr{    uint32_t insn;    uint32_t res1;    uint64_t text_offset;    uint64_t res2;    uint64_t res3;    uint64_t res4;    uint64_t res5;    uint64_t res6;    uint32_t magic_64;    uint32_t res7;};

5.2.2 boot_linux函数分析

void boot_linux(void *kernel, unsigned *tags,        const char *cmdline, unsigned machtype,        void *ramdisk, unsigned ramdisk_size){    unsigned char *final_cmdline;#if DEVICE_TREE    int ret = 0;#endif    void (*entry)(unsigned, unsigned, unsigned*) = (entry_func_ptr*)(PA((addr_t)kernel));//获取kernel的入口地址    uint32_t tags_phys = PA((addr_t)tags);    struct kernel64_hdr *kptr = ((struct kernel64_hdr*)(PA((addr_t)kernel)));//获取hdr    ramdisk = (void *)PA((addr_t)ramdisk);    final_cmdline = update_cmdline((const char*)cmdline);//更新cmdline,返回的final_cmdline是各个cmdline的字符数组#if DEVICE_TREE    dprintf(INFO, "Updating device tree: start\n");    /* Update the Device Tree */    ret = update_device_tree((void *)tags,(const char *)final_cmdline, ramdisk, ramdisk_size);//将更新的cmdline存入dt    if(ret)    {        dprintf(CRITICAL, "ERROR: Updating Device Tree Failed \n");        ASSERT(0);    }    dprintf(INFO, "Updating device tree: done\n");#else    /* Generating the Atags */    generate_atags(tags, final_cmdline, ramdisk, ramdisk_size);//将更新的cmdline、ramdisk存入tags对应的地址#endif    free(final_cmdline);//释放在update_cmdline中申请的内存空间#if VERIFIED_BOOT#if !VBOOT_MOTA    if (device.verity_mode == 0) {#if FBCON_DISPLAY_MSG        display_bootverify_menu(DISPLAY_MENU_LOGGING);        wait_for_users_action();#else        dprintf(CRITICAL,            "The dm-verity is not started in enforcing mode.\nWait for 5 seconds before proceeding\n");        mdelay(5000);#endif    }#endif#endif#if VERIFIED_BOOT    /* Write protect the device info */    if (!boot_into_recovery && target_build_variant_user() && devinfo_present && mmc_write_protect("devinfo", 1))    {        dprintf(INFO, "Failed to write protect dev info\n");        ASSERT(0);    }#endif    /* Turn off splash screen if enabled */#if DISPLAY_SPLASH_SCREEN    target_display_shutdown();  //显示关机图像#endif    /* Perform target specific cleanup */    target_uninit();    //执行目标特定清除    dprintf(INFO, "booting linux @ %p, ramdisk @ %p (%d), tags/device tree @ %p\n",        entry, ramdisk, ramdisk_size, (void *)tags_phys);    enter_critical_section(); //进入临界区    /* do any platform specific cleanup before kernel entry */    platform_uninit();  //执行平台特定清除    arch_disable_cache(UCACHE);#if ARM_WITH_MMU    arch_disable_mmu();//禁止mmu#endif    bs_set_timestamp(BS_KERNEL_ENTRY);    if (IS_ARM64(kptr))//判断是否是64位的内核        /* Jump to a 64bit kernel */        scm_elexec_call((paddr_t)kernel, tags_phys);//执行内核启动    else        /* Jump to a 32bit kernel */        entry(0, machtype, (unsigned*)tags_phys);}

主要功能:
1. 获取kernel、ramdisk的地址
2. 更新cmdline,并存储在dt/tags分区中
3. 回收平台特定资源
4. 进入kernel

5.2.3 ffbm分析

如果boot_linux_from_xxx函数中check_format_bit()=0,且misc分区的0地址为”ffbm-“,则boot_into_ffbm=true。该过程通过get_ffbm函数实现。

int get_ffbm(char *ffbm, unsigned size){    const char *ffbm_cmd = "ffbm-";    uint32_t page_size = get_page_size();    char *ffbm_page_buffer = NULL;    int retval = 0;    if (size < FFBM_MODE_BUF_SIZE || size >= page_size)    {        dprintf(CRITICAL, "Invalid size argument passed to get_ffbm\n");        retval = -1;        goto cleanup;    }    ffbm_page_buffer = (char*)malloc(page_size);    if (!ffbm_page_buffer)    {        dprintf(CRITICAL, "Failed to alloc buffer for ffbm cookie\n");        retval = -1;        goto cleanup;    }    if (read_misc(0, ffbm_page_buffer, page_size))    {        dprintf(CRITICAL, "Error reading MISC partition\n");        retval = -1;        goto cleanup;    }    ffbm_page_buffer[size] = '\0';    if (strncmp(ffbm_cmd, ffbm_page_buffer, strlen(ffbm_cmd)))    {        retval = 0;        goto cleanup;    }    else    {        if (strlcpy(ffbm, ffbm_page_buffer, size) <                FFBM_MODE_BUF_SIZE -1)        {            dprintf(CRITICAL, "Invalid string in misc partition\n");            retval = -1;        }        else            retval = 1;    }cleanup:if(ffbm_page_buffer)        free(ffbm_page_buffer);    return retval;}
0 0
原创粉丝点击