caffe源码:Blob

来源:互联网 发布:淘宝店铺流量赚钱 编辑:程序博客网 时间:2024/05/11 19:55

caffe.proto

// Specifies the shape (dimensions) of a Blob.message BlobShape {  repeated int64 dim = 1 [packed = true];}message BlobProto {  optional BlobShape shape = 7;  repeated float data = 5 [packed = true];  repeated float diff = 6 [packed = true];  repeated double double_data = 8 [packed = true];  repeated double double_diff = 9 [packed = true];  // 4D dimensions -- deprecated.  Use "shape" instead.  optional int32 num = 1 [default = 0];  optional int32 channels = 2 [default = 0];  optional int32 height = 3 [default = 0];  optional int32 width = 4 [default = 0];}

blob.hpp

#ifndef CAFFE_BLOB_HPP_#define CAFFE_BLOB_HPP_#include <algorithm>#include <string>#include <vector>#include "caffe/common.hpp"#include "caffe/proto/caffe.pb.h"#include "caffe/syncedmem.hpp"const int kMaxBlobAxes = 32;namespace caffe {/** * @brief A wrapper around SyncedMemory holders serving as the basic *        computational unit through which Layer%s, Net%s, and Solver%s *        interact. * * TODO(dox): more thorough description. */template <typename Dtype>class Blob { public:  Blob()       : data_(), diff_(), count_(0), capacity_(0) {}  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.  explicit Blob(const int num, const int channels, const int height,      const int width);  explicit Blob(const vector<int>& shape);  /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.  void Reshape(const int num, const int channels, const int height,      const int width);  /**   * @brief Change the dimensions of the blob, allocating new memory if   *        necessary.   *   * This function can be called both to create an initial allocation   * of memory, and to adjust the dimensions of a top blob during Layer::Reshape   * or Layer::Forward. When changing the size of blob, memory will only be   * reallocated if sufficient memory does not already exist, and excess memory   * will never be freed.   *   * Note that reshaping an input blob and immediately calling Net::Backward is   * an error; either Net::Forward or Net::Reshape need to be called to   * propagate the new input shape to higher layers.   */  void Reshape(const vector<int>& shape);  void Reshape(const BlobShape& shape);  void ReshapeLike(const Blob& other);  inline string shape_string() const  {    ostringstream stream;    for (int i = 0; i < shape_.size(); ++i)    {      stream << shape_[i] << " ";    }    stream << "(" << count_ << ")";    return stream.str();  }  inline const vector<int>& shape() const { return shape_; }  /**   * @brief Returns the dimension of the index-th axis (or the negative index-th   *        axis from the end, if index is negative).   *   * @param index the axis index, which may be negative as it will be   *        "canonicalized" using CanonicalAxisIndex.   *        Dies on out of range index.   */  inline int shape(int index) const  {    return shape_[CanonicalAxisIndex(index)];  }  inline int num_axes() const { return shape_.size(); }  inline int count() const { return count_; }  /**   * @brief Compute the volume of a slice; i.e., the product of dimensions   *        among a range of axes.   *   * @param start_axis The first axis to include in the slice.   *   * @param end_axis The first axis to exclude from the slice.   */  inline int count(int start_axis, int end_axis) const  {    CHECK_LE(start_axis, end_axis);    CHECK_GE(start_axis, 0);    CHECK_GE(end_axis, 0);    CHECK_LE(start_axis, num_axes());    CHECK_LE(end_axis, num_axes());    int count = 1;    for (int i = start_axis; i < end_axis; ++i)    {      count *= shape(i);    }    return count;  }  /**   * @brief Compute the volume of a slice spanning from a particular first   *        axis to the final axis.   *   * @param start_axis The first axis to include in the slice.   */  inline int count(int start_axis) const  {    return count(start_axis, num_axes());  }  /**   * @brief Returns the 'canonical' version of a (usually) user-specified axis,   *        allowing for negative indexing (e.g., -1 for the last axis).   *   * @param axis_index the axis index.   *        If 0 <= index < num_axes(), return index.   *        If -num_axes <= index <= -1, return (num_axes() - (-index)),   *        e.g., the last axis index (num_axes() - 1) if index == -1,   *        the second to last if index == -2, etc.   *        Dies on out of range index.   */  inline int CanonicalAxisIndex(int axis_index) const  {    CHECK_GE(axis_index, -num_axes())        << "axis " << axis_index << " out of range for " << num_axes()        << "-D Blob with shape " << shape_string();    CHECK_LT(axis_index, num_axes())        << "axis " << axis_index << " out of range for " << num_axes()        << "-D Blob with shape " << shape_string();    if (axis_index < 0)    {      return axis_index + num_axes();    }    return axis_index;  }  /// @brief Deprecated legacy shape accessor num: use shape(0) instead.  inline int num() const { return LegacyShape(0); }  /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.  inline int channels() const { return LegacyShape(1); }  /// @brief Deprecated legacy shape accessor height: use shape(2) instead.  inline int height() const { return LegacyShape(2); }  /// @brief Deprecated legacy shape accessor width: use shape(3) instead.  inline int width() const { return LegacyShape(3); }  inline int LegacyShape(int index) const  {    CHECK_LE(num_axes(), 4)        << "Cannot use legacy accessors on Blobs with > 4 axes.";    CHECK_LT(index, 4);    CHECK_GE(index, -4);    if (index >= num_axes() || index < -num_axes())    {      // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse      // indexing) -- this special case simulates the one-padding used to fill      // extraneous axes of legacy blobs.      return 1;    }    return shape(index);  }  inline int offset(const int n, const int c = 0, const int h = 0,      const int w = 0) const  {    CHECK_GE(n, 0);    CHECK_LE(n, num());    CHECK_GE(channels(), 0);    CHECK_LE(c, channels());    CHECK_GE(height(), 0);    CHECK_LE(h, height());    CHECK_GE(width(), 0);    CHECK_LE(w, width());    //Notice! method to calculate the offset!    return ((n * channels() + c) * height() + h) * width() + w;  }  //Notice! method to calculate the offset!  inline int offset(const vector<int>& indices) const  {    CHECK_LE(indices.size(), num_axes());    int offset = 0;    for (int i = 0; i < num_axes(); ++i)    {      offset *= shape(i);      if (indices.size() > i)      {        CHECK_GE(indices[i], 0);        CHECK_LT(indices[i], shape(i));        offset += indices[i];      }    }    return offset;  }  /**   * @brief Copy from a source Blob.   *   * @param source the Blob to copy from   * @param copy_diff if false, copy the data; if true, copy the diff   * @param reshape if false, require this Blob to be pre-shaped to the shape   *        of other (and die otherwise); if true, Reshape this Blob to other's   *        shape if necessary   */  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,      bool reshape = false);  inline Dtype data_at(const int n, const int c, const int h,      const int w) const  {    return cpu_data()[offset(n, c, h, w)];  }  inline Dtype diff_at(const int n, const int c, const int h,      const int w) const  {    return cpu_diff()[offset(n, c, h, w)];  }  inline Dtype data_at(const vector<int>& index) const  {    return cpu_data()[offset(index)];  }  inline Dtype diff_at(const vector<int>& index) const  {    return cpu_diff()[offset(index)];  }  inline const shared_ptr<SyncedMemory>& data() const  {    CHECK(data_);    return data_;  }  inline const shared_ptr<SyncedMemory>& diff() const  {    CHECK(diff_);    return diff_;  }  const Dtype* cpu_data() const;  void set_cpu_data(Dtype* data);  const int* gpu_shape() const;  const Dtype* gpu_data() const;  const Dtype* cpu_diff() const;  const Dtype* gpu_diff() const;  Dtype* mutable_cpu_data();  Dtype* mutable_gpu_data();  Dtype* mutable_cpu_diff();  Dtype* mutable_gpu_diff();  void Update();  void FromProto(const BlobProto& proto, bool reshape = true);  void ToProto(BlobProto* proto, bool write_diff = false) const;  /// @brief Compute the sum of absolute values (L1 norm) of the data.  Dtype asum_data() const;  /// @brief Compute the sum of absolute values (L1 norm) of the diff.  Dtype asum_diff() const;  /// @brief Compute the sum of squares (L2 norm squared) of the data.  Dtype sumsq_data() const;  /// @brief Compute the sum of squares (L2 norm squared) of the diff.  Dtype sumsq_diff() const;  /// @brief Scale the blob data by a constant factor.  void scale_data(Dtype scale_factor);  /// @brief Scale the blob diff by a constant factor.  void scale_diff(Dtype scale_factor);  /**   * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the   *        data_ of Blob other -- useful in Layer%s which simply perform a copy   *        in their Forward pass.   *   * This deallocates the SyncedMemory holding this Blob's data_, as   * shared_ptr calls its destructor when reset with the "=" operator.   */  void ShareData(const Blob& other);  /**   * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the   *        diff_ of Blob other -- useful in Layer%s which simply perform a copy   *        in their Forward pass.   *   * This deallocates the SyncedMemory holding this Blob's diff_, as   * shared_ptr calls its destructor when reset with the "=" operator.   */  void ShareDiff(const Blob& other);  bool ShapeEquals(const BlobProto& other); protected:  shared_ptr<SyncedMemory> data_;  shared_ptr<SyncedMemory> diff_;  shared_ptr<SyncedMemory> shape_data_;  vector<int> shape_;  int count_;  int capacity_;  DISABLE_COPY_AND_ASSIGN(Blob);};  // class Blob}  // namespace caffe#endif  // CAFFE_BLOB_HPP_

blob.cpp

#include <climits>#include <vector>#include "caffe/blob.hpp"#include "caffe/common.hpp"#include "caffe/syncedmem.hpp"#include "caffe/util/math_functions.hpp"namespace caffe {template <typename Dtype>void Blob<Dtype>::Reshape(const int num, const int channels, const int height,    const int width){  vector<int> shape(4);  shape[0] = num;  shape[1] = channels;  shape[2] = height;  shape[3] = width;  Reshape(shape);}template <typename Dtype>void Blob<Dtype>::Reshape(const vector<int>& shape){  CHECK_LE(shape.size(), kMaxBlobAxes);  count_ = 1;  shape_.resize(shape.size());        //STL: vector<> .resize  // shape_data_ : shared_ptr<SyncedMemory> shape_data_;  if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int))  {    shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));  }  int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());  for (int i = 0; i < shape.size(); ++i)  {    CHECK_GE(shape[i], 0);    if (count_ != 0)    {      CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";    }    count_ *= shape[i];    shape_[i] = shape[i];    shape_data[i] = shape[i];  }  if (count_ > capacity_)  {    capacity_ = count_;    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));  }}template <typename Dtype>void Blob<Dtype>::Reshape(const BlobShape& shape){  CHECK_LE(shape.dim_size(), kMaxBlobAxes);  vector<int> shape_vec(shape.dim_size());  for (int i = 0; i < shape.dim_size(); ++i)  {    shape_vec[i] = shape.dim(i);  }  Reshape(shape_vec);}template <typename Dtype>void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other){  Reshape(other.shape());}template <typename Dtype>Blob<Dtype>::Blob(const int num, const int channels, const int height,    const int width)  // capacity_ must be initialized before calling Reshape  : capacity_(0){  Reshape(num, channels, height, width);}template <typename Dtype>Blob<Dtype>::Blob(const vector<int>& shape)  // capacity_ must be initialized before calling Reshape  : capacity_(0) {  Reshape(shape);}template <typename Dtype>const int* Blob<Dtype>::gpu_shape() const{  CHECK(shape_data_);  return (const int*)shape_data_->gpu_data();}template <typename Dtype>const Dtype* Blob<Dtype>::cpu_data() const{  CHECK(data_);  return (const Dtype*)data_->cpu_data();}template <typename Dtype>void Blob<Dtype>::set_cpu_data(Dtype* data){  CHECK(data);  data_->set_cpu_data(data);}template <typename Dtype>const Dtype* Blob<Dtype>::gpu_data() const{  CHECK(data_);  return (const Dtype*)data_->gpu_data();}template <typename Dtype>const Dtype* Blob<Dtype>::cpu_diff() const{  CHECK(diff_);  return (const Dtype*)diff_->cpu_data();}template <typename Dtype>const Dtype* Blob<Dtype>::gpu_diff() const{  CHECK(diff_);  return (const Dtype*)diff_->gpu_data();}template <typename Dtype>Dtype* Blob<Dtype>::mutable_cpu_data(){  CHECK(data_);  return static_cast<Dtype*>(data_->mutable_cpu_data());}template <typename Dtype>Dtype* Blob<Dtype>::mutable_gpu_data(){  CHECK(data_);  return static_cast<Dtype*>(data_->mutable_gpu_data());}template <typename Dtype>Dtype* Blob<Dtype>::mutable_cpu_diff(){  CHECK(diff_);  return static_cast<Dtype*>(diff_->mutable_cpu_data());}template <typename Dtype>Dtype* Blob<Dtype>::mutable_gpu_diff(){  CHECK(diff_);  return static_cast<Dtype*>(diff_->mutable_gpu_data());}template <typename Dtype>void Blob<Dtype>::ShareData(const Blob& other){  CHECK_EQ(count_, other.count());  data_ = other.data();}template <typename Dtype>void Blob<Dtype>::ShareDiff(const Blob& other){  CHECK_EQ(count_, other.count());  diff_ = other.diff();}// The "update" method is used for parameter blobs in a Net, which are stored// as Blob<float> or Blob<double> -- hence we do not define it for// Blob<int> or Blob<unsigned int>.template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }template <typename Dtype>void Blob<Dtype>::Update(){  // We will perform update based on where the data is located.  switch (data_->head())  {  case SyncedMemory::HEAD_AT_CPU:    // perform computation on CPU    //caffe_axpy : Y = alpha * X + Y    caffe_axpy<Dtype>(count_, Dtype(-1),        static_cast<const Dtype*>(diff_->cpu_data()),        static_cast<Dtype*>(data_->mutable_cpu_data()));    break;  case SyncedMemory::HEAD_AT_GPU:  case SyncedMemory::SYNCED:#ifndef CPU_ONLY    // perform computation on GPU    caffe_gpu_axpy<Dtype>(count_, Dtype(-1),        static_cast<const Dtype*>(diff_->gpu_data()),        static_cast<Dtype*>(data_->mutable_gpu_data()));#else    NO_GPU;#endif    break;  default:    LOG(FATAL) << "Syncedmem not initialized.";  }}template <> unsigned int Blob<unsigned int>::asum_data() const{  NOT_IMPLEMENTED;  return 0;}template <> int Blob<int>::asum_data() const{  NOT_IMPLEMENTED;  return 0;}template <typename Dtype>Dtype Blob<Dtype>::asum_data() const{  if (!data_)  {      return 0;  }  switch (data_->head())  {      case SyncedMemory::HEAD_AT_CPU:        return caffe_cpu_asum(count_, cpu_data());      case SyncedMemory::HEAD_AT_GPU:      case SyncedMemory::SYNCED:    #ifndef CPU_ONLY      {        Dtype asum;        caffe_gpu_asum(count_, gpu_data(), &asum);        return asum;      }    #else        NO_GPU;    #endif      case SyncedMemory::UNINITIALIZED:        return 0;      default:        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();  }  return 0;}template <> unsigned int Blob<unsigned int>::asum_diff() const{  NOT_IMPLEMENTED;  return 0;}template <> int Blob<int>::asum_diff() const{  NOT_IMPLEMENTED;  return 0;}template <typename Dtype>Dtype Blob<Dtype>::asum_diff() const{  if (!diff_)  {      return 0;  }  switch (diff_->head())  {      case SyncedMemory::HEAD_AT_CPU:        return caffe_cpu_asum(count_, cpu_diff());      case SyncedMemory::HEAD_AT_GPU:      case SyncedMemory::SYNCED:    #ifndef CPU_ONLY      {        Dtype asum;        caffe_gpu_asum(count_, gpu_diff(), &asum);        return asum;      }    #else        NO_GPU;    #endif      case SyncedMemory::UNINITIALIZED:        return 0;      default:        LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();  }  return 0;}template <> unsigned int Blob<unsigned int>::sumsq_data() const{  NOT_IMPLEMENTED;  return 0;}template <> int Blob<int>::sumsq_data() const{  NOT_IMPLEMENTED;  return 0;}template <typename Dtype>Dtype Blob<Dtype>::sumsq_data() const{  Dtype sumsq;  const Dtype* data;  if (!data_)  {      return 0;  }  switch (data_->head())  {      case SyncedMemory::HEAD_AT_CPU:        data = cpu_data();        sumsq = caffe_cpu_dot(count_, data, data);        break;      case SyncedMemory::HEAD_AT_GPU:      case SyncedMemory::SYNCED:    #ifndef CPU_ONLY        data = gpu_data();        caffe_gpu_dot(count_, data, data, &sumsq);    #else        NO_GPU;    #endif        break;      case SyncedMemory::UNINITIALIZED:        return 0;      default:        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();  }  return sumsq;}template <> unsigned int Blob<unsigned int>::sumsq_diff() const{  NOT_IMPLEMENTED;  return 0;}template <> int Blob<int>::sumsq_diff() const{  NOT_IMPLEMENTED;  return 0;}template <typename Dtype>Dtype Blob<Dtype>::sumsq_diff() const{  Dtype sumsq;  const Dtype* diff;  if (!diff_)  {      return 0;  }  switch (diff_->head())  {      case SyncedMemory::HEAD_AT_CPU:        diff = cpu_diff();        sumsq = caffe_cpu_dot(count_, diff, diff);        break;      case SyncedMemory::HEAD_AT_GPU:      case SyncedMemory::SYNCED:    #ifndef CPU_ONLY        diff = gpu_diff();        caffe_gpu_dot(count_, diff, diff, &sumsq);        break;    #else        NO_GPU;    #endif      case SyncedMemory::UNINITIALIZED:        return 0;      default:        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();  }  return sumsq;}template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor){  NOT_IMPLEMENTED;}template <> void Blob<int>::scale_data(int scale_factor){  NOT_IMPLEMENTED;}template <typename Dtype>void Blob<Dtype>::scale_data(Dtype scale_factor){  Dtype* data;  if (!data_)  {      return;  }  switch (data_->head())  {      case SyncedMemory::HEAD_AT_CPU:        data = mutable_cpu_data();        caffe_scal(count_, scale_factor, data);        return;      case SyncedMemory::HEAD_AT_GPU:      case SyncedMemory::SYNCED:    #ifndef CPU_ONLY        data = mutable_gpu_data();        caffe_gpu_scal(count_, scale_factor, data);        return;    #else        NO_GPU;    #endif      case SyncedMemory::UNINITIALIZED:        return;      default:        LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();  }}template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor){  NOT_IMPLEMENTED;}template <> void Blob<int>::scale_diff(int scale_factor){  NOT_IMPLEMENTED;}template <typename Dtype>void Blob<Dtype>::scale_diff(Dtype scale_factor){  Dtype* diff;  if (!diff_)  {      return;  }  switch (diff_->head())  {      case SyncedMemory::HEAD_AT_CPU:        diff = mutable_cpu_diff();        caffe_scal(count_, scale_factor, diff);        return;      case SyncedMemory::HEAD_AT_GPU:      case SyncedMemory::SYNCED:    #ifndef CPU_ONLY        diff = mutable_gpu_diff();        caffe_gpu_scal(count_, scale_factor, diff);        return;    #else        NO_GPU;    #endif      case SyncedMemory::UNINITIALIZED:        return;      default:        LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();  }}template <typename Dtype>bool Blob<Dtype>::ShapeEquals(const BlobProto& other){  if (other.has_num() || other.has_channels() ||      other.has_height() || other.has_width())  {    // Using deprecated 4D Blob dimensions --    // shape is (num, channels, height, width).    // Note: we do not use the normal Blob::num(), Blob::channels(), etc.    // methods as these index from the beginning of the blob shape, where legacy    // parameter blobs were indexed from the end of the blob shape (e.g., bias    // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).    return shape_.size() <= 4 &&           LegacyShape(-4) == other.num() &&           LegacyShape(-3) == other.channels() &&           LegacyShape(-2) == other.height() &&           LegacyShape(-1) == other.width();  }  vector<int> other_shape(other.shape().dim_size());  for (int i = 0; i < other.shape().dim_size(); ++i)  {    other_shape[i] = other.shape().dim(i);  }  return shape_ == other_shape;}template <typename Dtype>void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape){  if (source.count() != count_ || source.shape() != shape_)  {    if (reshape)    {      ReshapeLike(source);    }    else    {      LOG(FATAL) << "Trying to copy blobs of different sizes.";    }  }  switch (Caffe::mode())  {      case Caffe::GPU:        if (copy_diff)        {          caffe_copy(count_, source.gpu_diff(),              static_cast<Dtype*>(diff_->mutable_gpu_data()));        }        else        {          caffe_copy(count_, source.gpu_data(),              static_cast<Dtype*>(data_->mutable_gpu_data()));        }        break;      case Caffe::CPU:        if (copy_diff)        {          caffe_copy(count_, source.cpu_diff(),              static_cast<Dtype*>(diff_->mutable_cpu_data()));        }        else        {          caffe_copy(count_, source.cpu_data(),              static_cast<Dtype*>(data_->mutable_cpu_data()));        }        break;      default:        LOG(FATAL) << "Unknown caffe mode.";  }}template <typename Dtype>void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape){  if (reshape)  {    vector<int> shape;    if (proto.has_num() || proto.has_channels() ||        proto.has_height() || proto.has_width()) {      // Using deprecated 4D Blob dimensions --      // shape is (num, channels, height, width).      shape.resize(4);      shape[0] = proto.num();      shape[1] = proto.channels();      shape[2] = proto.height();      shape[3] = proto.width();    }    else    {      shape.resize(proto.shape().dim_size());      for (int i = 0; i < proto.shape().dim_size(); ++i)      {        shape[i] = proto.shape().dim(i);      }    }    Reshape(shape);  }  else  {    CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";  }  // copy data  Dtype* data_vec = mutable_cpu_data();  if (proto.double_data_size() > 0)  {    CHECK_EQ(count_, proto.double_data_size());    for (int i = 0; i < count_; ++i)    {      data_vec[i] = proto.double_data(i);    }  }  else  {    CHECK_EQ(count_, proto.data_size());    for (int i = 0; i < count_; ++i)    {      data_vec[i] = proto.data(i);    }  }  if (proto.double_diff_size() > 0)  {    CHECK_EQ(count_, proto.double_diff_size());    Dtype* diff_vec = mutable_cpu_diff();    for (int i = 0; i < count_; ++i)    {      diff_vec[i] = proto.double_diff(i);    }  }  else if (proto.diff_size() > 0)  {    CHECK_EQ(count_, proto.diff_size());    Dtype* diff_vec = mutable_cpu_diff();    for (int i = 0; i < count_; ++i)    {      diff_vec[i] = proto.diff(i);    }  }}template <>void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const{  proto->clear_shape();  for (int i = 0; i < shape_.size(); ++i)  {    proto->mutable_shape()->add_dim(shape_[i]);  }  proto->clear_double_data();  proto->clear_double_diff();  const double* data_vec = cpu_data();  for (int i = 0; i < count_; ++i)  {    proto->add_double_data(data_vec[i]);  }  if (write_diff)  {    const double* diff_vec = cpu_diff();    for (int i = 0; i < count_; ++i)    {      proto->add_double_diff(diff_vec[i]);    }  }}template <>void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const{  proto->clear_shape();  for (int i = 0; i < shape_.size(); ++i)  {    proto->mutable_shape()->add_dim(shape_[i]);  }  proto->clear_data();  proto->clear_diff();  const float* data_vec = cpu_data();  for (int i = 0; i < count_; ++i)  {    proto->add_data(data_vec[i]);  }  if (write_diff)  {    const float* diff_vec = cpu_diff();    for (int i = 0; i < count_; ++i)    {      proto->add_diff(diff_vec[i]);    }  }}INSTANTIATE_CLASS(Blob);template class Blob<int>;template class Blob<unsigned int>;}  // namespace caffe
0 0
原创粉丝点击