Linux内核2.4.x的网络接口结构(转)

来源:互联网 发布:看电影什么软件最好 编辑:程序博客网 时间:2024/05/28 15:50

1 2 3 4 5 下一页

四.网络接口核心部分

刚才谈论了驱动程序怎么和网络接口核心层衔接的。网络接口核心层知道驱动程序以及驱动程序的函数的入口是通过*dev_base指向的设备链的,而下层是通过调用这一层的函数netif_rx()(net/core/dev.c1214行) 把数据传递个这一层的。

网络接口核心层的上层是具体的网络协议,下层是驱动程序,我们已经解决了下层的关系,但和上层的关系没有解决。先来讨论一下网络接口核心层和网络协议族部份的关系,这种关系不外乎也是接收和发送的关系。

网络协议,例如IP,ARP等的协议要发送数据包的时候会把数据包传递给这层(网络接口核心层),那么这种传递是通过什么函数来发生的呢?网络接口核心层通过dev_queue_xmit()(net/core/dev.c,line975)这个函数,向上层提供统一的发送接口,也就是说无论是IP,还是ARP协议,通过这个函数把要发送的数据传递给这一层,想发送数据的时候调用这个函数就可以了。dev_queue_xmit()做的工作最后会落实到dev->hard_start_xmit(),而dev->hard_start_xmit()会调用实际的驱动程序来完成发送的任务。例如上面的例子中,调用dev->hard_start_xmit()实际就是调用了el_start_xmit()。

现在讨论接收的情况。网络接口核心层通过的函数netif_rx()(net/core/dev.c 1214行)接收了下层发送来的数据,这时候当然要把数据包往上层派送。所有的协议族的下层协议都需要接收数据,TCP/IP的IP协议和ARP协议,SPX/IPX的IPX协议,Appletalk的DDP和AARP协议等都需要直接从网络接口核心层接收数据,网络接口核心层接收数据是如何把包发给这些协议的呢?这时的情形,与该层和其下层的关系很相似,网络接口核心层的下面可能有许多的网卡驱动程序,为了知道怎么向这些驱动程序发数据,前面已经讲过,是通过*dev_base这个指针指向的链解决的。现在解决和上层的关系,是通过static struct packet_ptype_base[16]( net/core/dev.c line 164)这个数组解决的。这个数组包含了需要接收数据包的协议,以及它们的接收函数的入口。

从上面可以看到,IP协议接收数据是通过ip_rcv()函数的,而ARP协议是通过arp_rcv()的,网络接口核心层只要通过这个数组就可以把数据交给上层函数了。

如果,有协议想把自己添加到这个数组,是通过dev_add_pack()(net/core/dev.c, line233)函数添加;从数组删除,则是通过dev_remove_pack()函数的。Ip层的注册是在初始化函数进行的

void __initip_init(void) (net/ipv4/ip_output.c, line 1003) { ……… dev_add_pack(&ip_packet_type); ……… }

重新倒回我们关于接收的讨论,网络接include口核心层通过的函数netif_rx()(net/core/dev.c 1214行)接收了上层发送来的数据,看看这个函数做了些什么。

由于现在还是在中断的服务里面,所以并不能够处理太多的东西,剩下的东西就通过CPU_raise_softirq(this_cpu, NET_RX_SOFTIRQ)交给软中断处理, 从open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL)可以知道NET_RX_SOFTIRQ软中断的处理函数是net_rx_action()(net/core/dev.c, line 1419)。net_rx_action()根据数据包的协议类型在数组ptype_base[16]里找到相应的协议,并从中知道了接收的处理函数,然后把数据包交给处理函数,这样就交给了上层处理,实际调用处理函数是通过net_rx_action()里的pt_prev->func()这一句。例如如果数据包是IP协议的话,ptype_base[ETH_P_IP]->func()(ip_rcv()),这样就把数据包交给了IP协议。

 

五.网络协议部分

协议层是真正实现是在这一层。在Linux/include/linux/socket.h里面,Linux的BSD Socket定义了多至32种支持的协议族,其中PF_INET就是我们最熟悉的TCP/IP协议族(IPv4, 以下没有特别声明都指IPv4)。以这个协议族为例,看看这层是怎么工作的。实现TCP/IP协议族的主要文件在Linux/net/ipv4/目录下面,Linux/net/ipv4/af_inet.c为主要的管理文件。

在Linux2.4.16里面,实现了TCP/IP协议族里面的的IGMP,TCP,UDP,ICMP,ARP,IP。我们先讨论一下这些协议之间的关系。IP和ARP协议是需要直接和网络设备接口打交道的协议,也就是需要从网络核心模块(core)接收数据和发送数据的。而其它协议TCP,UDP,IGMP,ICMP是需要直接利用IP协议的,需要从IP协议接收数据,以及利用IP协议发送数据,同时还要向上层Socket层提供直接的调用接口。可以看到IP层是一个核心的协议,向下需要和下层打交道,又要向上层提供所有的传输和接收的服务。

先来看看IP协议层。网络核心模块(core) 如果接收到IP层的数据,通过ptype_base[ETH_P_IP] 数组的IP层的项指向的IP协议的ip_packet_type->ip_rcv()函数把数据包传递给IP层,也就是说IP层通过这个函数ip_rcv()(linux/net/ipv4/ip_input.c)接收数据的。ip_rcv()这个函数只对IP数据包做了一些checksum的检查工作,如果包是正确的,就把包交给了下一个处理函数ip_rcv_finish()(注意调用是通过NF_HOOK这个宏实现的)。现在,ip_rcv_finish()这个函数真正要完成一些IP层的工作了。IP层要做的主要工作就是路由,要决定把数据包往那里送。路由的工作是通过函数ip_route_input()(/linux/net/ipv4/route.c,line 1622)实现的。对于进来的包可能的路由有这些: 属于本地的数据(即是需要传递给TCP,UDP,IGMP这些上层协议的) ; 需要转发的数据包(网关或者NAT服务器之类的); 不可能路由的数据包(地址信息有误); 我们现在关心的是如果数据是本地数据的时候怎么处理。ip_route_input()调用ip_route_input_slow()(net/ipv4/route.c, line 1312),在ip_route_input_slow()里面 的1559行rth->u.dst.input=ip_local_deliver,这就是判断到IP包是本地的数据包,并把本地数据包处理函数的地址返回。好了,路由工作完成了,返回到ip_rcv_finish()。ip_rcv_finish()最后调用了skb->dst->input(skb),从上面可以看到,这其实就是调用了ip_local_deliver()函数,而ip_local_deliver()接着就调用了ip_local_deliver_finish()。现在真正到了往上层传递数据包的时候了。

现在的情形和网络核心模块层(core) 往上层传递数据包的情形非常相似,怎么从多个协议选择合适的协议,并且往这个协议传递数据呢?网络网络核心模块层(core) 通过一个数组ptype_base[16]保存了注册了的所有可以接收数据的协议,同样网络协议层也定义了这样一个数组struct net_protocol*inet_protos[MAX_INET_PROTOS](/linux/net/ipv4/protocol.C#L102),它保存了所有需要从IP协议层接收数据的上层协议(IGMP,TCP,UDP,ICMP)的接收处理函数的地址。我们来看看TCP协议的数据结构是怎么样的:

/*   linux/net/ipv4/protocol.c line67 */   static struct inet_protocol tcp_protocol = {   handler: tcp_v4_rcv,// 接收数据的函数   err_handler: tcp_v4_err,// 出错处理的函数   next: IPPROTO_PREVIOUS,   protocol: IPPROTO_TCP,   name: "TCP"   };

第一项就是我们最关心的了,IP层可以通过这个函数把数据包往TCP层传的。在linux/net/ipv4/protocol.c的上部,我们可以看到其它协议层的处理函数是igmp_rcv(),udp_rcv(), icmp_rcv()。同样在linux/net/ipv4/protocol.c,往数组inet_protos[MAX_INET_PROTOS] 里面添加协议是通过函数inet_add_protocol()实现的,删除协议是通过 inet_del_protocol()实现的。inet_protos[MAX_INET_PROTOS]初始化的过程在linux/net/ipv4/af_inet.c inet_init()初始化函数里面。

inet_init(){   ……   printk(KERN_INFO "IP Protocols: ");   for (p = inet_protocol_base; p != NULL {   struct inet_protocol *tmp = (struct inet_protocol *) p->next;   inet_add_protocol(p);// 添加协议   printk("%s%s",p->name,tmp?", ":"/n");   p = tmp;   ………   }

如果你在Linux启动的时候有留意启动的信息, 或者在linux下打命令dmesg就可以看到这一段程序输出的信息: IP Protocols: ICMP,UDP,TCP,IGMP也就是说现在数组inet_protos[]里面有了ICMP

UDP,TCP,IGMP四个协议的inet_protocol数据结构,数据结构包含了它们接收数据的处理函数。

Linux 2.4.16在linux/include/linux/socket.h里定义了32种支持的BSD socket协议 ,常见的有TCP/IP,IPX/SPX,X.25等,而每种协议还提供不同的服务,例如TCP/IP协议通过TCP协议支持连接服务,而通过UDP协议支持无连接服务,面对这么多的协议,向用户提供统一的接口是必要的,这种统一是通过socket来进行的。

在BSD socket网络编程的模式下,利用一系列统一的函数来利用通信的服务。例如一个典型的利用TCP协议通信程序是这样:

sock_descriptor = socket(AF_INET,SOCK_STREAM,0);   connect(sock_descriptor, 地址,) ;   send(sock_descriptor,”hello world”);   recv(sock_descriptor,buffer,1024,0);

第一个函数指定了协议Inet协议,即TCP/IP协议,同时是利用面向连接的服务,这样就对应到TCP协议,以后的操作就是利用socket的标准函数进行的。

从上面我们可以看到两个问题,首先socket层需要根据用户指定的协议族(上面是AF_INET),从下面32种协议中选择一种协议来完成用户的要求,当协议族确定以后,还要把特定的服务映射到协议族下的具体协议,例如当用户指定的是面向连接的服务时,Inet协议族会映射到TCP协议。

从多个协议中选择用户指定的协议,并把具体的出理交给选中的协议,这和网络核心层向上和向下衔接的问题本质上是一样的,所以解决的方法也是一样的,同样还是通过数组。在Linux/net/socket.c定义了这个数组staticstruct net_proto_family *net_families[NPROTO] 。数组的元素已经确定了,net_families[2] 是TCP/IP协议,net_families[3]是X.25协议,具体那一项对应什么协议,在include/linux/socket.h有定义。但是每一项的数据结构net_proto_family的ops是空的,也就是具体协议处理函数的地址是不知道的。协议的处理函数和ops建立联系是通过sock_reGISter()(Linux/net/socket.c)这个函数建立的,例如TCP/IP协议的是这样建立关系的:

int __init inet_init(void) /* (net/ipv4/af_inet.c) */   {   (void) sock_register(&inet_family_ops);   }

只要给出AF_INET(在宏里定义是2),就可以找到net_failies[2] 里面的处理函数了 。

协议的映射完成了,现在要进行服务的映射了。上层当然不可能知道下层的什么协议能对应特定的服务,所以这种映射自然由协议族自己完成。在TCP/IP协议族里,这种映射是通过struct list_head inetsw[SOCK_MAX]( net/ipv4/af_inet.c)这个数组进行映射的,在谈论这个数组之前我们来看另外一个数组:



inetsw_array[] (net/ipv4/af_inet.c)   static struct inet_protosw inetsw_array[] =   {    {    type: SOCK_STREAM,    protocol: IPPROTO_TCP,    prot: &tcp_prot,    ops: &inet_stream_ops,    capability: -1,    no_check: 0,    flags: INET_PROTOSW_PERMANENT,    },    {    type: SOCK_DGRAM,    protocol: IPPROTO_UDP,    prot: &udp_prot,    ops: &inet_dgram_ops,    capability: -1,    no_check: UDP_CSUM_DEFAULT,    flags: INET_PROTOSW_PERMANENT,    },    {    type: SOCK_RAW,    protocol: IPPROTO_IP, /* wild card */    prot: &raw_prot,    ops: &inet_dgram_ops,    capability: CAP_NET_RAW,    no_check: UDP_CSUM_DEFAULT,    flags: INET_PROTOSW_REUSE,    }   };

我们看到,SOCK_STREAM映射到了TCP协议,SOCK_DGRAM映射到了UDP协议,SOCK_RA W映射到了IP协议。现在只要把inetsw_array里的三项添加到数组inetsw[SOCK_MAX]就可以了,添加是通过函数inet_reGISter_protosw()实现的。在inet_init()(net/ipv4/af_inet.c) 里完成了这些工作。

还有一个需要映射的就是socket其它诸如accept,send(),connect(),release(),bind()等的操作函数是怎么映射的呢?我们来看一下上面的数组的TCP的项:

{   type: SOCK_STREAM,   protocol: IPPROTO_TCP,   prot: &tcp_prot,   ops: &inet_stream_ops,   capability: -1,   no_check: 0,   flags: INET_PROTOSW_PERMANENT,   },

我们看到这种映射是通过ops,和prot来映射的,我们再来看看 tcp_prot这一项:

  struct proto tcp_prot = {   name: "TCP",   close: tcp_close,   connect: tcp_v4_connect,   disconnect: tcp_disconnect,   accept: tcp_accept,   ioctl: tcp_ioctl,   init: tcp_v4_init_sock,   destroy: tcp_v4_destroy_sock,   shutdown: tcp_shutdown,   setsockopt: tcp_setsockopt,   getsockopt: tcp_getsockopt,   sendmsg: tcp_sendmsg,   recvmsg: tcp_recvmsg,   backlog_rcv: tcp_v4_do_rcv,   hash: tcp_v4_hash,   unhash: tcp_unhash,   get_port: tcp_v4_get_port,   };

所以的映射都已经完成了,用户调用connect()函数,其实就是调用了tcp_v4_connect()函数,按照这幅图,读起源码来就简单了很多了。

六 Socket层

上一节把socket层大多数要讨论的东西都谈论了,现在只讲讲socket 层和用户的衔接。

系统调用socket(),bind(),connect(),accept,send(),release()等是在Linux/net/socket.c里面实现的,系统调用实现的函数是相应的函数名加上sys_的前缀。

现在看看当用户调用socket()这个函数,到底下面发生了什么。

Socket(AF_INET,SOCK_STREAM,0)调用了sys_socket(),sys_socket()接着调用socket_creat(),socket_creat()就要根据用户提供的协议族参数在net_families[]里寻找合适的协议族,如果协议族没有被安装就要请求安装该协议族的模块,然后就调用该协议族的create()函数的处理句柄。根据参数AF_INET,inet_creat()就被调用了,在inet_creat()根据服务类型在inetsw[SOCK_MAX]选择合适的协议,并把协议的操作集赋给socket就是了,根据SOCK_STREAM,TCP协议被选中,

inet_creat(){   answer=inetsw [用户要求服务] ;   sock->ops = answer->ops;   sk->prot = answer->prot   }

到此为止,上下都打通了,该是大家读源码的时候了。

原创粉丝点击