Java并发之阻塞队列(二)

来源:互联网 发布:崩坏3矩阵buff大全 编辑:程序博客网 时间:2024/05/22 06:56

LinkedBlockingQueue一个由链表组合而成的有界阻塞队列.
1.LinkedBlockingQueue的数据结构
这里写图片描述
采用的是单链表结构
2.LinkedBlockingQueue源码分析
- 2.1继承关系

public class LinkedBlockingQueue<E> extends AbstractQueue<E>        implements BlockingQueue<E>, java.io.Serializable {        }
  • 2.2构造方法
     public LinkedBlockingQueue() {        this(Integer.MAX_VALUE);//设置容量    }    public LinkedBlockingQueue(int capacity) {        if (capacity <= 0)         throw new IllegalArgumentException();        this.capacity = capacity;        last = head = new Node<E>(null);//初始化节点    }    //将集合放到LinkedBlockingQueue中     public LinkedBlockingQueue(Collection<? extends E> c) {        this(Integer.MAX_VALUE);        final ReentrantLock putLock = this.putLock;        putLock.lock(); // 打开存储锁        try {            int n = 0;            for (E e : c) {                if (e == null)//出现为null的元素,抛异常                throw new NullPointerException();                if (n == capacity)                throw new IllegalStateException("Queue full");                enqueue(new Node<E>(e));//添加节点                ++n;//计数器            }            count.set(n);//设置队列中元素的个数        } finally {            putLock.unlock();//释放锁        }    }
  • 2.3内部数据结构
    /*队列的容量,如果没有设置则为Integer.MAX_SIZE*/    private final int capacity;    /** 当前元素的个数 */    private final AtomicInteger count = new AtomicInteger(0);    /**头结点*/    private transient Node<E> head;    /**尾节点 */    private transient Node<E> last;    /**获取锁 */    private final ReentrantLock takeLock = new ReentrantLock();    /**获取等待状态*/    private final Condition notEmpty = takeLock.newCondition();    /** 存储锁 */    private final ReentrantLock putLock = new ReentrantLock();    /** 存储等待状态*/    private final Condition notFull = putLock.newCondition();    //内部类节点     static class Node<E> {        E item;        Node<E> next;        Node(E x) { item = x; }    }    //内部类标志器    private class Itr implements Iterator<E> {        //...    }
  • 2.4put方法
public void put(E e) throws InterruptedException {        if (e == null)//元素不能为空              throw new NullPointerException();        int c = -1;        Node<E> node = new Node(e);//新建一个节点        //获取存储锁        final ReentrantLock putLock = this.putLock;        //队列中元素的数量        final AtomicInteger count = this.count;        putLock.lockInterruptibly();        try {            //如果数量等于容量大小,存储操作等待            while (count.get() == capacity) {                notFull.await();            }            enqueue(node);//插入元素            c = count.getAndIncrement();//增加数量            if (c + 1 < capacity)                notFull.signal();//唤醒取操作        } finally {            putLock.unlock();//释放锁        }        if (c == 0)            signalNotEmpty();    }
  • 2.5enqueue方法
private void enqueue(Node<E> node) {        last = last.next = node;//放到尾节点    }
  • 2.6offer方法
public boolean offer(E e) {        if (e == null) throw new NullPointerException();        final AtomicInteger count = this.count;        if (count.get() == capacity)//判断大小            return false;        int c = -1;        Node<E> node = new Node(e);//新建节点        final ReentrantLock putLock = this.putLock;        putLock.lock();        try {            if (count.get() < capacity) {                enqueue(node);//插入节点                c = count.getAndIncrement();//增肌数量                if (c + 1 < capacity)                    notFull.signal();//唤醒取操作            }        } finally {            putLock.unlock();        }        if (c == 0)            signalNotEmpty();        return c >= 0;    }
  • 2.7take方法
public E take() throws InterruptedException {        E x;        int c = -1;        final AtomicInteger count = this.count;        final ReentrantLock takeLock = this.takeLock;        takeLock.lockInterruptibly();        try {           //队列中没有元素,取操作阻塞            while (count.get() == 0) {                notEmpty.await();            }            //获取元素            x = dequeue();            //数量减一            c = count.getAndDecrement();            if (c > 1)                notEmpty.signal();//唤醒取操作        } finally {            takeLock.unlock();        }        if (c == capacity)            signalNotFull();        return x;    }
  • 2.8dequeue方法
private E dequeue() {        Node<E> h = head;        Node<E> first = h.next;        h.next = h; // help GC 移除头结点        head = first;        E x = first.item;        first.item = null;        return x;//将头结点返回    }
  • 2.9 clear方法
public void clear() {        fullyLock();//将取锁和存锁都锁住        try {            //清空队列元素            for (Node<E> p, h = head; (p = h.next) != null; h = p) {                h.next = h;                p.item = null;            }            head = last;            if (count.getAndSet(0) == capacity)                notFull.signal();        } finally {            fullyUnlock();        }    }
  • 3.0toArray方法
public Object[] toArray() {        fullyLock();        try {            int size = count.get();            Object[] a = new Object[size];//新建数组            int k = 0;            //将集合中的元素放到数组中            for (Node<E> p = head.next; p != null; p = p.next)                a[k++] = p.item;            return a;        } finally {            fullyUnlock();        }    }

-3.1fullyLock和fullyUnlock

   void fullyLock() {        putLock.lock();        takeLock.lock();    }    void fullyUnlock() {        takeLock.unlock();        putLock.unlock();    }
0 0
原创粉丝点击