决策树(Python实现)

来源:互联网 发布:淘宝定制包 编辑:程序博客网 时间:2024/06/06 00:30

这篇文章是《机器学习实战》(Machine Learning in Action)第三章 决策树算法的Python实现代码。


1 参考链接

机器学习实战

2 实现代码

2.1 treePlotter.py

import matplotlib.pyplot as pltdesicionNode = dict(boxstyle='sawtooth', fc='0.8')leafNode = dict(boxstyle='round4', fc='0.8')arrow_args = dict(arrowstyle='<-')def plotNode(nodeTxt, centerPt, parentPt, nodeType):    createPlot.ax1.annotate(nodeTxt, xy=parentPt,xycoords='axes fraction',\        xytext=centerPt, textcoords='axes fraction', va='center',\        ha='center', bbox=nodeType, arrowprops=arrow_args)def createPlot():    fig = plt.figure(1, facecolor='white')    fig.clf()    createPlot.ax1 = plt.subplot(111, frameon=False)    plotNode(U'desicion',(0.5,0.1),(0.1,0.5), desicionNode)    plotNode(U'leaf', (0.8,0.1),(0.3,0.8), leafNode)    plt.show()def createPlot(inTree):    fig = plt.figure(1, facecolor='white')    fig.clf()    axprops = dict(xticks=[], yticks=[])    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    plotTree.totalW = float(getNumLeafs(inTree))    plotTree.totalD = float(getTreeDepth(inTree))    plotTree.xOff = -0.5/plotTree.totalW    plotTree.xOff = 0.0     plotTree.yOff = 1.0    plotTree(inTree, (0.5, 1.0), '')    plt.show()def getNumLeafs(myTree):    numLeafs = 0    firstStr = myTree.keys()[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__=='dict':            numLeafs += getNumLeafs(secondDict[key])        else:            numLeafs += 1    return numLeafsdef getTreeDepth(myTree):    maxDepth = 0    firstStr = myTree.keys()[0]    secondDict = myTree[firstStr]    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            thisDepth = 1 + getTreeDepth(secondDict[key])        else:            thisDepth = 1        if thisDepth > maxDepth:            maxDepth = thisDepth    return maxDepthdef retrieveTree(i):    listOfTrees = [{'no surfacing':{0:'no',1:{'flippers':\        {0:'no', 1:'yes'}}}},                   {'no surfacing':{0:'no',1:{'flippers':\        {0:{'head':{0:'no',1:'yes'}}, 1:'no'}}}}]    return listOfTrees[i]def plotMidText(cntrPt, parentPt, txtString):    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]    createPlot.ax1.text(xMid, yMid, txtString)def plotTree(myTree, parentPt, nodeTxt):    numLeafs = getNumLeafs(myTree)    depth = getTreeDepth(myTree)    firstStr = myTree.keys()[0]    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff)    plotMidText(cntrPt, parentPt, nodeTxt)    plotNode(firstStr, cntrPt, parentPt, desicionNode)    secondDict = myTree[firstStr]    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD    for key in secondDict.keys():        if type(secondDict[key]).__name__ == 'dict':            plotTree(secondDict[key], cntrPt, str(key))        else:            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD# TEST#myTree = retrieveTree(0)#myTree['no surfacing'][3] = 'maybe'#createPlot(myTree)

2.2 trees.py

from math import logimport operatorimport treePlotterdef createDataSet():    dataSet = [[1,1,'yes'],               [1,1,'yes'],               [1,0,'no'],               [0,1,'no'],               [0,1,'no']]    labels = ['no surfacing', 'flippers']    return dataSet, labelsdef calcShannonEnt(dataSet):    numEntries = len(dataSet)    labelCounts = {}    for featVec in dataSet:        currentLabel = featVec[-1]        if currentLabel not in labelCounts.keys():            labelCounts[currentLabel] = 0        labelCounts[currentLabel] += 1    shannonEnt = 0.0    for key in labelCounts:        prob = float(labelCounts[key])/numEntries        shannonEnt -= prob*log(prob, 2)    return shannonEntdef splitDataSet(dataSet, axis, value):    retDataSet = []    for featVec in dataSet:        if featVec[axis] == value:            reducedFeatVec = featVec[:axis]            reducedFeatVec.extend(featVec[axis+1:])            retDataSet.append(reducedFeatVec)    return retDataSetdef chooseBestFeatureToSplit(dataSet):    numFeatures = len(dataSet[0])-1    baseEntropy = calcShannonEnt(dataSet)    baseInfoGain =0.0    bestFeature = -1    for i in range(numFeatures):        featList = [example[i] for example in dataSet]        uniqueVals = set(featList)        newEntropy = 0.0        for value in uniqueVals:            subDataSet = splitDataSet(dataSet, i, value)            prob = len(subDataSet)/float(len(dataSet))            newEntropy += prob*calcShannonEnt(subDataSet)        infoGain = baseEntropy - newEntropy        if(infoGain > baseInfoGain):            baseInfoGain = infoGain            bestFeature = i    return bestFeaturedef majorityCnt(classList):    classCount = {}    for vote in classList:        if vote not in classCount.keys():            classCount[vote] = 0        classCount += 1    sortedClassCount = sorted(classCount.iteritems(),\        key=operator.itemgetter(1), reverse=True)    return sortedClassCount[0][0]def createTree(dataSet, labels):    classList = [example[-1] for example in dataSet]    if classList.count(classList[0]) == len(classList):        return classList[0]    if len(dataSet[0]) == 1:        return majorityCnt(classList)    bestFeat = chooseBestFeatureToSplit(dataSet)    bestFeatLabel = labels[bestFeat]    myTree = {bestFeatLabel:{}}    del (labels[bestFeat])    featValues = [example[bestFeat] for example in dataSet]    uniqueVals = set(featValues)    for value in uniqueVals:        subLabels = labels[:]        myTree[bestFeatLabel][value] = createTree(splitDataSet\            (dataSet, bestFeat, value), subLabels)    return myTreedef classify(inputTree, featLabels, testVec):    firstStr = inputTree.keys()[0]    secondDict = inputTree[firstStr]    featIndex = featLabels.index(firstStr)    for key in secondDict.keys():        if testVec[featIndex] == key:            if type(secondDict[key]).__name__ == 'dict':                classLabel = classify(secondDict[key], featLabels, testVec)            else:                classLabel = secondDict[key]    return classLabeldef storeTree(inputTree, filename):    import pickle    fw = open(filename, 'w')    pickle.dump(inputTree, fw)    fw.close()def grabTree(filename):    import pickle    fr = open(filename)    return pickle.load(fr)# TESTfr = open('lenses.txt')lenses=[inst.strip().split('\t') for inst in fr.readlines()]lensesLabels = ['age', 'prescript','astigmatic', 'tearRate']lenseTree = createTree(lenses, lensesLabels)treePlotter.createPlot(lenseTree)

3 运行结果

这里写图片描述

0 0