Java多线程(2)——线程状态,操作,优先级

来源:互联网 发布:绿谷网络 编辑:程序博客网 时间:2024/04/29 09:15

线程生命周期

线程具有生命周期,其中包括5种状态:New,Runnable,Running,Blocked,Dead

1、新建状态(New):新创建了一个线程对象,在使用start()方法之前线程都处于新建状态或者叫出生状态。

2、就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法。该状态的线程位于可运行线程池中,变得可运行,等待获取CPU的使用权。

3、运行状态(Running):就绪状态的线程获取了CPU,执行程序代码。

4、阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。阻塞的情况分三种:
(一)、等待阻塞:运行的线程执行wait()方法,JVM会把该线程放入等待池中。
(二)、同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池中。
(三)、其他阻塞:运行的线程执行sleep()或join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。

5、死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。

关于阻塞状态,需要深入说一下,实际上解决阻塞是多线程的核心任务。

并发,通常是提高运行在单处理器上的性能——《Java编程思想》

仔细思考一下应该发现,单处理器运行多线程程序实际上比顺序执行同样的程序开销大,这是因为在运行同样的逻辑代码基础上,多线程程序还需要进行线程切换,付出了额外开销。

但如果程序出现阻塞,情况就会不一样。例如,程序需要获得用户输入,顺序程序会在需要等待用户输入,整个程序暂停,而多线程程序则只会阻塞一个线程,而程序的其他部分仍然继续进行。因此,在复杂程序设计中,因为大量的阻塞存在,多线程可以更有效利用计算资源,比单线程程序更有优势。另外多线程还带来程序的解藕性,有利于开发维护。

线程操作

所谓线程操作,就是管理线程状态间切换的方法。

以下是线程状态和状态间切换的示意图

这里写图片描述

线程执行:[New->Runnable]start()方法,见上节,不赘述。

线程运行:[Runnable->Running]由上小节可想知,在正常运行的程序中Runnable状态到Running状态的切换应该是一瞬即逝的,只要分配得系统资源就自动完成转变。

线程礼让:[Running->Runnable] 从Running到Runnable的转变需要使用yield()方法,尝试让出所占有的CPU资源,让其他线程获取运行机会,对操作系统上的调度器来说是一个信号,不具有强制性,不一定立即切换线程(在实际开发中,测试阶段频繁调用yeid方法使线程切换更频繁,从而让一些多线程相关的错误更容易暴露出来)。

线程终止:[Running->Dead]线程自然结束或异常停止,线程会死掉。强制终止方法现在已经不推荐使用,这是因为interrupt(),stop(),destory()等方法容易引起线程安全问题而被废弃,现在倡议在run()方法中使用循环,使用一个Bool型标记控制循环的退出。

线程加入:[Running->Blocked] join()方法,等待其他线程终止。在当前线程中调用另一个线程的join()方法,则当前线程转入阻塞状态,直到另一个进程运行结束,当前线程再由阻塞转为就绪状态。

线程睡眠:[Running->Blocked] Thread.sleep(long millis)方法,使线程转到阻塞状态。millis参数设定睡眠的时间,以毫秒为单位。当睡眠结束后,就转为就绪(Runnable)状态。

线程等待:[Running->Blocked] Object类中的wait()方法,导致当前的线程等待,直到其他线程调用此对象的 notify() 方法或 notifyAll() 唤醒方法。这个两个唤醒方法也是Object类中的方法,行为等价于调用 wait(0) 一样。

线程唤醒:Object类中的notify()方法,唤醒在此对象监视器上等待的单个线程。如果所有线程都在此对象上等待,则会选择唤醒其中一个线程。选择是任意性的,并在对实现做出决定时发生。线程通过调用其中一个 wait 方法,在对象的监视器上等待。 直到当前的线程放弃此对象上的锁定,才能继续执行被唤醒的线程。被唤醒的线程将以常规方式与在该对象上主动同步的其他所有线程进行竞争;例如,唤醒的线程在作为锁定此对象的下一个线程方面没有可靠的特权或劣势。类似的方法还有一个notifyAll(),唤醒在此对象监视器上等待的所有线程。

线程的优先级

多线程程序的资源分配遵循一个优先级规则:Java线程有优先级,优先级高的线程会获得较多的运行机会。

Java线程的优先级用整数表示,取值范围是1~10,Thread类有以下三个静态常量:
static int MAX_PRIORITY
线程可以具有的最高优先级,取值为10。
static int MIN_PRIORITY
线程可以具有的最低优先级,取值为1。
static int NORM_PRIORITY
分配给线程的默认优先级,取值为5。

Thread类的setPriority()和getPriority()方法分别用来设置和获取线程的优先级。

每个线程都有默认的优先级。主线程的默认优先级是Thread.NORM_PRIORITY。
线程的优先级有继承关系,比如A线程中创建了B线程,那么B将和A具有相同的优先级。
JVM提供了10个线程优先级,但与常见的操作系统都不能很好的映射。如果希望程序能移植到各个操作系统中,应该仅仅使用Thread类有以下三个静态常量作为优先级,这样能保证同样的优先级采用了同样的调度方式。

常用函数深入说明

join()

join是Thread类的一个方法,启动线程后直接调用,即join()的作用是:“等待该线程终止”,这里需要理解的就是该线程是指的主线程等待子线程的终止。也就是在子线程调用了join()方法后面的代码,只有等到子线程结束了才能执行。

Thread t = new AThread(); t.start(); t.join();

为什么要用join()方法?

在很多情况下,主线程生成并起动了子线程,如果子线程里要进行大量的耗时的运算,主线程往往将于子线程之前结束,但是如果主线程处理完其他的事务后,需要用到子线程的处理结果,也就是主线程需要等待子线程执行完成之后再结束,这个时候就要用到join()方法了。

举例说明:

不加join。

class Thread1 extends Thread{    private String name;    public Thread1(String name) {        super(name);       this.name=name;    }    public void run() {        System.out.println(Thread.currentThread().getName()+ " 线程运行开始!");        for (int i = 0; i < 5; i++) {            System.out.println("子线程"+name + "运行 : " + i);            try {                sleep((int) Math.random() * 10);            } catch (InterruptedException e) {                e.printStackTrace();            }        }        System.out.println(Thread.currentThread().getName() + " 线程运行结束!");    }}public class Main {    public static void main(String[] args) {        System.out.println(Thread.currentThread().getName()+"主线程运行开始!");        Thread1 mTh1=new Thread1("A");        Thread1 mTh2=new Thread1("B");        mTh1.start();        mTh2.start();        System.out.println(Thread.currentThread().getName()+ "主线程运行结束!");    }}

输出结果,发现主线程比子线程早结束:

main主线程运行开始!main主线程运行结束!B 线程运行开始!子线程B运行 : 0A 线程运行开始!子线程A运行 : 0子线程B运行 : 1子线程A运行 : 1子线程A运行 : 2子线程A运行 : 3子线程A运行 : 4A 线程运行结束!子线程B运行 : 2子线程B运行 : 3子线程B运行 : 4B 线程运行结束!

加join:

public class Main {    public static void main(String[] args) {        System.out.println(Thread.currentThread().getName()+"主线程运行开始!");        Thread1 mTh1=new Thread1("A");        Thread1 mTh2=new Thread1("B");        mTh1.start();        mTh2.start();        try {            mTh1.join();        } catch (InterruptedException e) {            e.printStackTrace();        }        try {            mTh2.join();        } catch (InterruptedException e) {            e.printStackTrace();        }        System.out.println(Thread.currentThread().getName()+ "主线程运行结束!");    }}

结果:

运行结果:main主线程运行开始!A 线程运行开始!子线程A运行 : 0B 线程运行开始!子线程B运行 : 0子线程A运行 : 1子线程B运行 : 1子线程A运行 : 2子线程B运行 : 2子线程A运行 : 3子线程B运行 : 3子线程A运行 : 4子线程B运行 : 4A 线程运行结束!

主线程一定会等子线程都结束了才结束

sleep()和yield()的区别

sleep()和yield()的区别):sleep()使当前线程进入停滞状态,所以执行sleep()的线程在指定的时间内肯定不会被执行;yield()只是使当前线程重新回到可执行状态,所以执行yield()的线程有可能在进入到可执行状态后马上又被执行。

sleep 方法使当前运行中的线程睡眼一段时间,进入不可运行状态,这段时间的长短是由程序设定的,yield 方法使当前线程让出 CPU 占有权,但让出的时间是不可设定的。实际上,yield()方法对应了如下操作:先检测当前是否有相同优先级的线程处于同可运行状态,如有,则把 CPU 的占有权交给此线程,否则,继续运行原来的线程。所以yield()方法称为“退让”,它把运行机会让给了同等优先级的其他线程

另外,sleep 方法允许较低优先级的线程获得运行机会,但 yield() 方法执行时,当前线程仍处在可运行状态,所以,不可能让出较低优先级的线程些时获得 CPU 占有权。在一个运行系统中,如果较高优先级的线程没有调用 sleep 方法,又没有受到 I\O 阻塞,那么,较低优先级线程只能等待所有较高优先级的线程运行结束,才有机会运行。

interrupt():

中断某个线程,这种结束方式比较粗暴,如果t线程打开了某个资源还没来得及关闭也就是run方法还没有执行完就强制结束线程,会导致资源无法关闭
要想结束进程最好的办法就是在线程类里面用以个boolean型变量来控制run()方法什么时候结束,run()方法一结束,该线程也就结束了。

wait()

Obj.wait(),与Obj.notify()必须要与synchronized(Obj)一起使用,也就是wait,与notify是针对已经获取了Obj锁进行操作,从语法角度来说就是Obj.wait(),Obj.notify必须在synchronized(Obj){…}语句块内。从功能上来说wait就是说线程在获取对象锁后,主动释放对象锁,同时本线程休眠。直到有其它线程调用对象的notify()唤醒该线程,才能继续获取对象锁,并继续执行。相应的notify()就是对对象锁的唤醒操作。但有一点需要注意的是notify()调用后,并不是马上就释放对象锁的,而是在相应的synchronized(){}语句块执行结束,自动释放锁后,JVM会在wait()对象锁的线程中随机选取一线程,赋予其对象锁,唤醒线程,继续执行。这样就提供了在线程间同步、唤醒的操作。Thread.sleep()与Object.wait()二者都可以暂停当前线程,释放CPU控制权,主要的区别在于Object.wait()在释放CPU同时,释放了对象锁的控制。

单单在概念上理解清楚了还不够,需要在实际的例子中进行测试才能更好的理解。对Object.wait(),Object.notify()的应用最经典的例子,应该是三线程打印ABC的问题了吧,这是一道比较经典的面试题,题目要求如下:

建立三个线程,A线程打印10次A,B线程打印10次B,C线程打印10次C,要求线程同时运行,交替打印10次ABC。这个问题用Object的wait(),notify()就可以很方便的解决。代码如下:

public class MyThreadPrinter2 implements Runnable {       private String name;       private Object prev;       private Object self;       private MyThreadPrinter2(String name, Object prev, Object self) {           this.name = name;           this.prev = prev;           this.self = self;       }       @Override      public void run() {           int count = 10;           while (count > 0) {               synchronized (prev) {                   synchronized (self) {                       System.out.print(name);                       count--;                      self.notify();                   }                   try {                       prev.wait();                   } catch (InterruptedException e) {                       e.printStackTrace();                   }               }           }       }       public static void main(String[] args) throws Exception {           Object a = new Object();           Object b = new Object();           Object c = new Object();           MyThreadPrinter2 pa = new MyThreadPrinter2("A", c, a);           MyThreadPrinter2 pb = new MyThreadPrinter2("B", a, b);           MyThreadPrinter2 pc = new MyThreadPrinter2("C", b, c);           new Thread(pa).start();        Thread.sleep(100);  //确保按顺序A、B、C执行        new Thread(pb).start();        Thread.sleep(100);          new Thread(pc).start();           Thread.sleep(100);          }   }  

输出结果:
ABCABCABCABCABCABCABCABCABCABC

先来解释一下其整体思路,从大的方向上来讲,该问题为三线程间的同步唤醒操作,主要的目的就是ThreadA->ThreadB->ThreadC->ThreadA循环执行三个线程。为了控制线程执行的顺序,那么就必须要确定唤醒、等待的顺序,所以每一个线程必须同时持有两个对象锁,才能继续执行。一个对象锁是prev,就是前一个线程所持有的对象锁。还有一个就是自身对象锁。主要的思想就是,为了控制执行的顺序,必须要先持有prev锁,也就前一个线程要释放自身对象锁,再去申请自身对象锁,两者兼备时打印,之后首先调用self.notify()释放自身对象锁,唤醒下一个等待线程,再调用prev.wait()释放prev对象锁,终止当前线程,等待循环结束后再次被唤醒。运行上述代码,可以发现三个线程循环打印ABC,共10次。程序运行的主要过程就是A线程最先运行,持有C,A对象锁,后释放A,C锁,唤醒B。线程B等待A锁,再申请B锁,后打印B,再释放B,A锁,唤醒C,线程C等待B锁,再申请C锁,后打印C,再释放C,B锁,唤醒A。看起来似乎没什么问题,但如果你仔细想一下,就会发现有问题,就是初始条件,三个线程按照A,B,C的顺序来启动,按照前面的思考,A唤醒B,B唤醒C,C再唤醒A。但是这种假设依赖于JVM中线程调度、执行的顺序。

此部分需要深入理解锁的概念之后再做研究。

wait和sleep区别

共同点:

  1. 他们都是在多线程的环境下,都可以在程序的调用处阻塞指定的毫秒数,并返回。
  2. wait()和sleep()都可以通过interrupt()方法 打断线程的暂停状态 ,从而使线程立刻抛出InterruptedException。
    如果线程A希望立即结束线程B,则可以对线程B对应的Thread实例调用interrupt方法。如果此刻线程B正在wait/sleep /join,则线程B会立刻抛出InterruptedException,在catch() {} 中直接return即可安全地结束线程。
    需要注意的是,InterruptedException是线程自己从内部抛出的,并不是interrupt()方法抛出的。对某一线程调用 interrupt()时,如果该线程正在执行普通的代码,那么该线程根本就不会抛出InterruptedException。但是,一旦该线程进入到 wait()/sleep()/join()后,就会立刻抛出InterruptedException 。

不同点:
1. Thread类的方法:sleep(),yield()等
Object的方法:wait()和notify()等
2. 每个对象都有一个锁来控制同步访问。Synchronized关键字可以和对象的锁交互,来实现线程的同步。
sleep方法没有释放锁,而wait方法释放了锁,使得其他线程可以使用同步控制块或者方法。
3. wait,notify和notifyAll只能在同步控制方法或者同步控制块里面使用,而sleep可以在任何地方使用
4. sleep必须捕获异常,而wait,notify和notifyAll不需要捕获异常

所以sleep()和wait()方法的最大区别是:
    sleep()睡眠时,保持对象锁,仍然占有该锁;
    而wait()睡眠时,释放对象锁。

但是wait()和sleep()都可以通过interrupt()方法打断线程的暂停状态,从而使线程立刻抛出InterruptedException(但不建议使用该方法)。
sleep()方法
sleep()使当前线程进入停滞状态(阻塞当前线程),让出CUP的使用、目的是不让当前线程独自霸占该进程所获的CPU资源,以留一定时间给其他线程执行的机会; sleep()是Thread类的Static(静态)的方法;因此他不能改变对象的机锁,所以当在一个Synchronized块中调用Sleep()方法是,线程虽然休眠了,但是对象的机锁并木有被释放,其他线程无法访问这个对象(即使睡着也持有对象锁)。
在sleep()休眠时间期满后,该线程不一定会立即执行,这是因为其它线程可能正在运行而且没有被调度为放弃执行,除非此线程具有更高的优先级。

0 0