tegra tx1 kernel start up

来源:互联网 发布:人员去向软件 编辑:程序博客网 时间:2024/06/05 03:06

/arch/arm64/kernel/head.S

/* * Low-level CPU initialisation * Based on arch/arm/kernel/head.S * * Copyright (C) 1994-2002 Russell King * Copyright (C) 2003-2012 ARM Ltd. * Authors: Catalin Marinas <catalin.marinas@arm.com> *      Will Deacon <will.deacon@arm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program.  If not, see <http://www.gnu.org/licenses/>. */#include <linux/linkage.h>#include <linux/init.h>#include <asm/assembler.h>#include <asm/ptrace.h>#include <asm/asm-offsets.h>#include <asm/cputype.h>#include <asm/memory.h>#include <asm/thread_info.h>#include <asm/pgtable-hwdef.h>#include <asm/pgtable.h>#include <asm/page.h>#include <asm/virt.h>/* * swapper_pg_dir is the virtual address of the initial page table. We place * the page tables 3 * PAGE_SIZE below KERNEL_RAM_VADDR. The idmap_pg_dir has * 2 pages and is placed below swapper_pg_dir. */#define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)#if (KERNEL_RAM_VADDR & 0xfffff) != 0x80000#error KERNEL_RAM_VADDR must start at 0xXXX80000#endif#define SWAPPER_DIR_SIZE    (3 * PAGE_SIZE)#define IDMAP_DIR_SIZE      (2 * PAGE_SIZE)    .globl  swapper_pg_dir    .equ    swapper_pg_dir, KERNEL_RAM_VADDR - SWAPPER_DIR_SIZE    .globl  idmap_pg_dir    .equ    idmap_pg_dir, swapper_pg_dir - IDMAP_DIR_SIZE    .macro  pgtbl, ttb0, ttb1, phys    add \ttb1, \phys, #TEXT_OFFSET - SWAPPER_DIR_SIZE    sub \ttb0, \ttb1, #IDMAP_DIR_SIZE    .endm#ifdef CONFIG_ARM64_64K_PAGES#define BLOCK_SHIFT PAGE_SHIFT#define BLOCK_SIZE  PAGE_SIZE#else#define BLOCK_SHIFT SECTION_SHIFT#define BLOCK_SIZE  SECTION_SIZE#endif#define KERNEL_START    KERNEL_RAM_VADDR#define KERNEL_END  _end/* * Initial memory map attributes. */#ifndef CONFIG_SMP#define PTE_FLAGS   PTE_TYPE_PAGE | PTE_AF#define PMD_FLAGS   PMD_TYPE_SECT | PMD_SECT_AF#else#define PTE_FLAGS   PTE_TYPE_PAGE | PTE_AF | PTE_SHARED#define PMD_FLAGS   PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S#endif#ifdef CONFIG_ARM64_64K_PAGES#define MM_MMUFLAGS PTE_ATTRINDX(MT_NORMAL) | PTE_FLAGS#else#define MM_MMUFLAGS PMD_ATTRINDX(MT_NORMAL) | PMD_FLAGS#endif/* * Kernel startup entry point. * --------------------------- * * The requirements are: *   MMU = off, D-cache = off, I-cache = on or off, *   x0 = physical address to the FDT blob. * * This code is mostly position independent so you call this at * __pa(PAGE_OFFSET + TEXT_OFFSET). * * Note that the callee-saved registers are used for storing variables * that are useful before the MMU is enabled. The allocations are described * in the entry routines. */    __HEAD    /*     * DO NOT MODIFY. Image header expected by Linux boot-loaders.     */    b   stext               // branch to kernel start, magic    .long   0               // reserved    .quad   _kernel_offset_le       // Image load offset from start of RAM, little-endian    .quad   _kernel_size_le         // Effective size of kernel image, little-endian    .quad   _kernel_flags_le        // Informative flags, little-endian    .quad   0               // reserved    .quad   0               // reserved    .quad   0               // reserved    .byte   0x41                // Magic number, "ARM\x64"    .byte   0x52    .byte   0x4d    .byte   0x64    .word   0               // reservedENTRY(stext)    mov x21, x0             // x21=FDT    bl  el2_setup           // Drop to EL1, w20=cpu_boot_mode    bl  __calc_phys_offset      // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET    bl  set_cpu_boot_mode_flag    mrs x22, midr_el1           // x22=cpuid    mov x0, x22    bl  lookup_processor_type    mov x23, x0             // x23=current cpu_table    cbz x23, __error_p          // invalid processor (x23=0)?    bl  __vet_fdt    bl  __create_page_tables        // x25=TTBR0, x26=TTBR1    /*     * The following calls CPU specific code in a position independent     * manner. See arch/arm64/mm/proc.S for details. x23 = base of     * cpu_info structure selected by lookup_processor_type above.     * On return, the CPU will be ready for the MMU to be turned on and     * the TCR will have been set.     */    ldr x27, __switch_data      // address to jump to after                        // MMU has been enabled    adr lr, __enable_mmu        // return (PIC) address    ldr x12, [x23, #CPU_INFO_SETUP]    add x12, x12, x28           // __virt_to_phys    br  x12             // initialise processorENDPROC(stext)/* * If we're fortunate enough to boot at EL2, ensure that the world is * sane before dropping to EL1. * * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x20 if * booted in EL1 or EL2 respectively. */ENTRY(el2_setup)    mrs x0, CurrentEL    cmp x0, #PSR_MODE_EL2t    ccmp    x0, #PSR_MODE_EL2h, #0x4, ne    b.ne    1f    mrs x0, sctlr_el2CPU_BE( orr x0, x0, #(1 << 25)  )   // Set the EE bit for EL2CPU_LE( bic x0, x0, #(1 << 25)  )   // Clear the EE bit for EL2    msr sctlr_el2, x0    b   2f1:  mrs x0, sctlr_el1CPU_BE( orr x0, x0, #(3 << 24)  )   // Set the EE and E0E bits for EL1CPU_LE( bic x0, x0, #(3 << 24)  )   // Clear the EE and E0E bits for EL1    msr sctlr_el1, x0    mov w20, #BOOT_CPU_MODE_EL1     // This cpu booted in EL1    isb    ret    /* Hyp configuration. */2:  mov x0, #(1 << 31)          // 64-bit EL1    msr hcr_el2, x0    /* Generic timers. */    mrs x0, cnthctl_el2    orr x0, x0, #3          // Enable EL1 physical timers    msr cnthctl_el2, x0    msr cntvoff_el2, xzr        // Clear virtual offset    /* Populate ID registers. */    mrs x0, midr_el1    mrs x1, mpidr_el1    msr vpidr_el2, x0    msr vmpidr_el2, x1    /* sctlr_el1 */    mov x0, #0x0800         // Set/clear RES{1,0} bitsCPU_BE( movk    x0, #0x33d0, lsl #16    )   // Set EE and E0E on BE systemsCPU_LE( movk    x0, #0x30d0, lsl #16    )   // Clear EE and E0E on LE systems    msr sctlr_el1, x0    /* Coprocessor traps. */    mov x0, #0x33ff    msr cptr_el2, x0            // Disable copro. traps to EL2#ifdef CONFIG_COMPAT    msr hstr_el2, xzr           // Disable CP15 traps to EL2#endif    /* Stage-2 translation */    msr vttbr_el2, xzr    /* Hypervisor stub */    adr x0, __hyp_stub_vectors    msr vbar_el2, x0    /* spsr */    mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\              PSR_MODE_EL1h)    msr spsr_el2, x0    msr elr_el2, lr    mov w20, #BOOT_CPU_MODE_EL2     // This CPU booted in EL2    eretENDPROC(el2_setup)/* * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed * in x20. See arch/arm64/include/asm/virt.h for more info. */ENTRY(set_cpu_boot_mode_flag)    ldr x1, =__boot_cpu_mode        // Compute __boot_cpu_mode    add x1, x1, x28    cmp w20, #BOOT_CPU_MODE_EL2    b.ne    1f    add x1, x1, #41:  str w20, [x1]           // This CPU has booted in EL1    retENDPROC(set_cpu_boot_mode_flag)/* * We need to find out the CPU boot mode long after boot, so we need to * store it in a writable variable. * * This is not in .bss, because we set it sufficiently early that the boot-time * zeroing of .bss would clobber it. */    .pushsection    .dataENTRY(__boot_cpu_mode)    .long   BOOT_CPU_MODE_EL2    .long   0    .popsection    .align  32:  .quad   .    .quad   PAGE_OFFSET#ifdef CONFIG_SMP    .align  31:  .quad   .    .quad   secondary_holding_pen_release    /*     * This provides a "holding pen" for platforms to hold all secondary     * cores are held until we're ready for them to initialise.     */ENTRY(secondary_holding_pen)    bl  el2_setup           // Drop to EL1, w20=cpu_boot_mode    bl  __calc_phys_offset      // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET    bl  set_cpu_boot_mode_flag    mrs x0, mpidr_el1    ldr     x1, =MPIDR_HWID_BITMASK    and x0, x0, x1    adr x1, 1b    ldp x2, x3, [x1]    sub x1, x1, x2    add x3, x3, x1pen:    ldr x4, [x3]    cmp x4, x0    b.eq    secondary_startup    wfe    b   penENDPROC(secondary_holding_pen)    /*     * Secondary entry point that jumps straight into the kernel. Only to     * be used where CPUs are brought online dynamically by the kernel.     */ENTRY(secondary_entry)    bl  el2_setup           // Drop to EL1    bl  __calc_phys_offset      // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET    bl  set_cpu_boot_mode_flag    b   secondary_startupENDPROC(secondary_entry)ENTRY(secondary_startup)    /*     * Common entry point for secondary CPUs.     */    mrs x22, midr_el1           // x22=cpuid    mov x0, x22    bl  lookup_processor_type    mov x23, x0             // x23=current cpu_table    cbz x23, __error_p          // invalid processor (x23=0)?    pgtbl   x25, x26, x24           // x25=TTBR0, x26=TTBR1    ldr x12, [x23, #CPU_INFO_SETUP]    add x12, x12, x28           // __virt_to_phys    blr x12             // initialise processor    ldr x21, =secondary_data    ldr x27, =__secondary_switched  // address to jump to after enabling the MMU    b   __enable_mmuENDPROC(secondary_startup)ENTRY(__secondary_switched)    ldr x0, [x21]           // get secondary_data.stack    mov sp, x0    mov x29, #0    b   secondary_start_kernelENDPROC(__secondary_switched)#endif  /* CONFIG_SMP *//* * Setup common bits before finally enabling the MMU. Essentially this is just * loading the page table pointer and vector base registers. * * On entry to this code, x0 must contain the SCTLR_EL1 value for turning on * the MMU. */__enable_mmu:    ldr x5, =vectors    msr vbar_el1, x5    msr ttbr0_el1, x25          // load TTBR0    msr ttbr1_el1, x26          // load TTBR1    isb    b   __turn_mmu_onENDPROC(__enable_mmu)/* * Enable the MMU. This completely changes the structure of the visible memory * space. You will not be able to trace execution through this. * *  x0  = system control register *  x27 = *virtual* address to jump to upon completion * * other registers depend on the function called upon completion */    .align  6__turn_mmu_on:    msr sctlr_el1, x0    isb    br  x27ENDPROC(__turn_mmu_on)/* * Calculate the start of physical memory. */__calc_phys_offset:    adr x0, 1f    ldp x1, x2, [x0]    sub x28, x0, x1         // x28 = PHYS_OFFSET - PAGE_OFFSET    add x24, x2, x28            // x24 = PHYS_OFFSET    retENDPROC(__calc_phys_offset)    .align 31:  .quad   .    .quad   PAGE_OFFSET/* * Macro to populate the PGD for the corresponding block entry in the next * level (tbl) for the given virtual address. * * Preserves:   pgd, tbl, virt * Corrupts:    tmp1, tmp2 */    .macro  create_pgd_entry, pgd, tbl, virt, tmp1, tmp2    lsr \tmp1, \virt, #PGDIR_SHIFT    and \tmp1, \tmp1, #PTRS_PER_PGD - 1 // PGD index    orr \tmp2, \tbl, #3         // PGD entry table type    str \tmp2, [\pgd, \tmp1, lsl #3]    .endm/* * Macro to populate block entries in the page table for the start..end * virtual range (inclusive). * * Preserves:   tbl, flags * Corrupts:    phys, start, end, pstate */    .macro  create_block_map, tbl, flags, phys, start, end, idmap=0    lsr \phys, \phys, #BLOCK_SHIFT    .if \idmap    and \start, \phys, #PTRS_PER_PTE - 1    // table index    .else    lsr \start, \start, #BLOCK_SHIFT    and \start, \start, #PTRS_PER_PTE - 1   // table index    .endif    orr \phys, \flags, \phys, lsl #BLOCK_SHIFT  // table entry    .ifnc   \start,\end    lsr \end, \end, #BLOCK_SHIFT    and \end, \end, #PTRS_PER_PTE - 1       // table end index    .endif9999:   str \phys, [\tbl, \start, lsl #3]       // store the entry    .ifnc   \start,\end    add \start, \start, #1          // next entry    add \phys, \phys, #BLOCK_SIZE       // next block    cmp \start, \end    b.ls    9999b    .endif    .endm/* * Setup the initial page tables. We only setup the barest amount which is * required to get the kernel running. The following sections are required: *   - identity mapping to enable the MMU (low address, TTBR0) *   - first few MB of the kernel linear mapping to jump to once the MMU has *     been enabled, including the FDT blob (TTBR1) *   - UART mapping if CONFIG_EARLY_PRINTK is enabled (TTBR1) */__create_page_tables:    pgtbl   x25, x26, x24           // idmap_pg_dir and swapper_pg_dir addresses    /*     * Clear the idmap and swapper page tables.     */    mov x0, x25    add x6, x26, #SWAPPER_DIR_SIZE1:  stp xzr, xzr, [x0], #16    stp xzr, xzr, [x0], #16    stp xzr, xzr, [x0], #16    stp xzr, xzr, [x0], #16    cmp x0, x6    b.lo    1b    ldr x7, =MM_MMUFLAGS    /*     * Create the identity mapping.     */    add x0, x25, #PAGE_SIZE     // section table address    adr x3, __turn_mmu_on       // virtual/physical address    create_pgd_entry x25, x0, x3, x5, x6    create_block_map x0, x7, x3, x5, x5, idmap=1    /*     * Map the kernel image (starting with PHYS_OFFSET).     */    add x0, x26, #PAGE_SIZE     // section table address    mov x5, #PAGE_OFFSET    create_pgd_entry x26, x0, x5, x3, x6    ldr x6, =KERNEL_END - 1    mov x3, x24             // phys offset    create_block_map x0, x7, x3, x5, x6    /*     * Map the FDT blob (maximum 2MB; must be within 512MB of     * PHYS_OFFSET).     */    mov x3, x21             // FDT phys address    and x3, x3, #~((1 << 21) - 1)  // 2MB aligned    mov x6, #PAGE_OFFSET    sub x5, x3, x24         // subtract PHYS_OFFSET    tst x5, #~((1 << 29) - 1)      // within 512MB?    csel    x21, xzr, x21, ne       // zero the FDT pointer    b.ne    1f    add x5, x5, x6          // __va(FDT blob)    add x6, x5, #1 << 21        // 2MB for the FDT blob    sub x6, x6, #1          // inclusive range    create_block_map x0, x7, x3, x5, x61:#ifdef CONFIG_EARLY_PRINTK    /*     * Create the pgd entry for the UART mapping. The full mapping is done     * later based earlyprintk kernel parameter.     */    ldr x5, =EARLYCON_IOBASE        // UART virtual address    add x0, x26, #2 * PAGE_SIZE     // section table address    create_pgd_entry x26, x0, x5, x6, x7#endif    retENDPROC(__create_page_tables)    .ltorg    .align  3    .type   __switch_data, %object__switch_data:    .quad   __mmap_switched    .quad   __bss_start         // x6    .quad   _end                // x7    .quad   processor_id            // x4    .quad   __fdt_pointer           // x5    .quad   memstart_addr           // x6    .quad   init_thread_union + THREAD_START_SP // sp/* * The following fragment of code is executed with the MMU on in MMU mode, and * uses absolute addresses; this is not position independent. */__mmap_switched:    adr x3, __switch_data + 8    ldp x6, x7, [x3], #161:  cmp x6, x7    b.hs    2f    str xzr, [x6], #8           // Clear BSS    b   1b2:    ldp x4, x5, [x3], #16    ldr x6, [x3], #8    ldr x16, [x3]    mov sp, x16    str x22, [x4]           // Save processor ID    str x21, [x5]           // Save FDT pointer    str x24, [x6]           // Save PHYS_OFFSET    mov x29, #0    b   start_kernelENDPROC(__mmap_switched)/* * Exception handling. Something went wrong and we can't proceed. We ought to * tell the user, but since we don't have any guarantee that we're even * running on the right architecture, we do virtually nothing. */__error_p:ENDPROC(__error_p)__error:1:  nop    b   1bENDPROC(__error)/* * This function gets the processor ID in w0 and searches the cpu_table[] for * a match. It returns a pointer to the struct cpu_info it found. The * cpu_table[] must end with an empty (all zeros) structure. * * This routine can be called via C code and it needs to work with the MMU * both disabled and enabled (the offset is calculated automatically). */ENTRY(lookup_processor_type)    adr x1, __lookup_processor_type_data    ldp x2, x3, [x1]    sub x1, x1, x2          // get offset between VA and PA    add x3, x3, x1          // convert VA to PA1:    ldp w5, w6, [x3]            // load cpu_id_val and cpu_id_mask    cbz w5, 2f              // end of list?    and w6, w6, w0    cmp w5, w6    b.eq    3f    add x3, x3, #CPU_INFO_SZ    b   1b2:    mov x3, #0              // unknown processor3:    mov x0, x3    retENDPROC(lookup_processor_type)    .align  3    .type   __lookup_processor_type_data, %object__lookup_processor_type_data:    .quad   .    .quad   cpu_table    .size   __lookup_processor_type_data, . - __lookup_processor_type_data/* * Determine validity of the x21 FDT pointer. * The dtb must be 8-byte aligned and live in the first 512M of memory. */__vet_fdt:    tst x21, #0x7    b.ne    1f    cmp x21, x24    b.lt    1f    mov x0, #(1 << 29)    add x0, x0, x24    cmp x21, x0    b.ge    1f    ret1:    mov x21, #0    retENDPROC(__vet_fdt)
0 0