博弈论 NIM取子问题 组合数学

来源:互联网 发布:深圳桃花岛休闲会所js 编辑:程序博客网 时间:2024/06/05 20:20

Nim取子游戏是由两个人面对若干堆硬币(或石子)进行的游戏。设有k>=1堆硬币,各堆分别含有N1N2NK 枚硬币。游戏的目的就是选择最后剩下的硬币。游戏法则如下:

1.两个游戏人交替进行游戏(游戏人I和游戏人II);
2.当轮到每个游戏人取子时,选择这些堆中的一堆,并从所选的堆中取走至少一枚硬币(游戏人可以取走他所选堆中的全部硬币);
3.当所有的堆都变成空堆时,最后取子的游戏人即为胜者。
这个游戏中的变量是堆数k和各堆的硬币数N1N2Nk。对应的组合问题是,确定游戏人I获胜还是游戏人II获胜以及两个游戏人应该如何取子才能保证自己获胜(获胜策略)。

我们看一下特殊情况如何取胜:
如果游戏开始时只有一堆硬币,游戏人I则通过取走所有的硬币而获胜。现在设有2堆硬币,且硬币数量分别为N1N2。游戏人取得胜利并不在于N1N2的值具体是多少,而是取决于它们是否相等。设N1=N2,游戏人I从大堆中取走的硬币使得两堆硬币数量相等,于是,游戏人I以后每次取子的数量与游戏人II相等而最终获胜。但是如果N1=N2,则:游戏人II只要按着游戏人I取子的数量在另一堆中取相等数量的硬币,最终获胜者将会是游戏人II。

每个正整数都有对应的一个二进制数,例如:57(10)==111001(2) ,即:57(10)=25+24+23+20。于是,我们可以认为每一堆硬币数由2的幂数的子堆组成。这样,含有57枚硬币大堆就能看成是分别由数量为25242320的各个子堆组成。

如果每一种大小的子堆的个数都是偶数,我们就称Nim取子游戏是平衡的,而对应位相加是偶数的称为平衡位,否则称为非平衡位。如有3堆为5、10、15

5=023+122+021+120
10=123+022+121+020
15=123+122+121+120

这个时候:

数量级 数目 20 2 21 2 22 2 23 2

这个时候我们说上面的石子堆处于平衡状态。

我们以一个两堆硬币的Nim取子游戏作为试验。设游戏开始时游戏处于非平衡状态。这样,游戏人I就能通过一种取子方式使得他取子后留给游戏人II的是一个平衡状态下的游戏,接着无论游戏人II如何取子,再留给游戏人I的一定是一个非平衡状态游戏,如此反复进行,当游戏人II在最后一次平衡状态下取子后,游戏人I便能一次性取走所有的硬币而获胜。而如果游戏开始时游戏牌平衡状态,那根据上述方式取子,最终游戏人II能获胜。

归根结底,Nim取子游戏的关键在于游戏开始时游戏处于何种状态(平衡或非平衡)和第一个游戏人是否能够按照取子游戏的获胜策略来进行游戏。

0 0
原创粉丝点击