java线程(线程同步)

来源:互联网 发布:南风知我意2 番外七微 编辑:程序博客网 时间:2024/05/01 12:29

【转载地址】"http://www.cnblogs.com/XHJT/p/3897440.html"


为何要使用同步? 
    java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 
    将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 
    从而保证了该变量的唯一性和准确性。
1.同步方法 
    即有synchronized关键字修饰的方法。 
    由于java的每个对象都有一个内置锁,当用此关键字修饰方法时, 
    内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。
    代码如: 
    public synchronized void save(){}

   注: synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,将会锁住整个类

2.同步代码块 
    即有synchronized关键字修饰的语句块。 
    被该关键字修饰的语句块会自动被加上内置锁,从而实现同步
    代码如: 
    synchronized(object){ 
    }

    注:同步是一种高开销的操作,因此应该尽量减少同步的内容。 
    通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。 
     
    代码实例:

package com.xhj.thread;    /**     * 线程同步的运用     *      * @author XIEHEJUN     *      */    public class SynchronizedThread {        class Bank {            private int account = 100;            public int getAccount() {                return account;            }            /**             * 用同步方法实现             *              * @param money             */            public synchronized void save(int money) {                account += money;            }            /**             * 用同步代码块实现             *              * @param money             */            public void save1(int money) {                synchronized (this) {                    account += money;                }            }        }        class NewThread implements Runnable {            private Bank bank;            public NewThread(Bank bank) {                this.bank = bank;            }            @Override            public void run() {                for (int i = 0; i < 10; i++) {                    // bank.save1(10);                    bank.save(10);                    System.out.println(i + "账户余额为:" + bank.getAccount());                }            }        }        /**         * 建立线程,调用内部类         */        public void useThread() {            Bank bank = new Bank();            NewThread new_thread = new NewThread(bank);            System.out.println("线程1");            Thread thread1 = new Thread(new_thread);            thread1.start();            System.out.println("线程2");            Thread thread2 = new Thread(new_thread);            thread2.start();        }        public static void main(String[] args) {            SynchronizedThread st = new SynchronizedThread();            st.useThread();        }    }

3.使用特殊域变量(volatile)实现线程同步

    a.volatile关键字为域变量的访问提供了一种免锁机制, 
    b.使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新, 
    c.因此每次使用该域就要重新计算,而不是使用寄存器中的值 
    d.volatile不会提供任何原子操作,它也不能用来修饰final类型的变量 
    
    例如: 
        在上面的例子当中,只需在account前面加上volatile修饰,即可实现线程同步。 
    
    代码实例:

//只给出要修改的代码,其余代码与上同        class Bank {            //需要同步的变量加上volatile            private volatile int account = 100;            public int getAccount() {                return account;            }            //这里不再需要synchronized             public void save(int money) {                account += money;            }        }

注:多线程中的非同步问题主要出现在对域的读写上,如果让域自身避免这个问题,则就不需要修改操作该域的方法。 
    用final域,有锁保护的域和volatile域可以避免非同步的问题。 
    
4.使用重入锁实现线程同步

    在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。 
    ReentrantLock类是可重入、互斥、实现了Lock接口的锁, 
    它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力
    ReenreantLock类的常用方法有:

        ReentrantLock() : 创建一个ReentrantLock实例 
        lock() : 获得锁 
        unlock() : 释放锁 
    注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用 
    例如: 
        在上面例子的基础上,改写后的代码为: 
        
    代码实例:

//只给出要修改的代码,其余代码与上同        class Bank {                        private int account = 100;            //需要声明这个锁            private Lock lock = new ReentrantLock();            public int getAccount() {                return account;            }            //这里不再需要synchronized             public void save(int money) {                lock.lock();                try{                    account += money;                }finally{                    lock.unlock();                }                            }        }

注:关于Lock对象和synchronized关键字的选择: 
        a.最好两个都不用,使用一种java.util.concurrent包提供的机制, 
            能够帮助用户处理所有与锁相关的代码。 
        b.如果synchronized关键字能满足用户的需求,就用synchronized,因为它能简化代码 
        c.如果需要更高级的功能,就用ReentrantLock类,此时要注意及时释放锁,否则会出现死锁,通常在finally代码释放锁 
        
5.使用局部变量实现线程同步 
    如果使用ThreadLocal管理变量,则每一个使用该变量的线程都获得该变量的副本, 
    副本之间相互独立,这样每一个线程都可以随意修改自己的变量副本,而不会对其他线程产生影响。
    ThreadLocal 类的常用方法
    ThreadLocal() : 创建一个线程本地变量 
    get() : 返回此线程局部变量的当前线程副本中的值 
    initialValue() : 返回此线程局部变量的当前线程的"初始值" 
    set(T value) : 将此线程局部变量的当前线程副本中的值设置为value
    例如: 
        在上面例子基础上,修改后的代码为: 
        
    代码实例:

//只改Bank类,其余代码与上同        public class Bank{            //使用ThreadLocal类管理共享变量account            private static ThreadLocal<Integer> account = new ThreadLocal<Integer>(){                @Override                protected Integer initialValue(){                    return 100;                }            };            public void save(int money){                account.set(account.get()+money);            }            public int getAccount(){                return account.get();            }        } 

注:ThreadLocal与同步机制 
        a.ThreadLocal与同步机制都是为了解决多线程中相同变量的访问冲突问题。 
        b.前者采用以"空间换时间"的方法,后者采用以"时间换空间"的方式

6.使用阻塞队列实现线程同步

    前面5种同步方式都是在底层实现的线程同步,但是我们在实际开发当中,应当尽量远离底层结构。 
    使用javaSE5.0版本中新增的java.util.concurrent包将有助于简化开发。 
    本小节主要是使用LinkedBlockingQueue<E>来实现线程的同步 
    LinkedBlockingQueue<E>是一个基于已连接节点的,范围任意的blocking queue。 
    队列是先进先出的顺序(FIFO),关于队列以后会详细讲解~ 
    
   LinkedBlockingQueue 类常用方法 
    LinkedBlockingQueue() : 创建一个容量为Integer.MAX_VALUE的LinkedBlockingQueue 
    put(E e) : 在队尾添加一个元素,如果队列满则阻塞 
    size() : 返回队列中的元素个数 
    take() : 移除并返回队头元素,如果队列空则阻塞 
    
   代码实例: 
        实现商家生产商品和买卖商品的同步

package com.xhj.thread;import java.util.Random;import java.util.concurrent.LinkedBlockingQueue;/** * 用阻塞队列实现线程同步 LinkedBlockingQueue的使用 *  * @author XIEHEJUN *  */public class BlockingSynchronizedThread {    /**     * 定义一个阻塞队列用来存储生产出来的商品     */    private LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue<Integer>();    /**     * 定义生产商品个数     */    private static final int size = 10;    /**     * 定义启动线程的标志,为0时,启动生产商品的线程;为1时,启动消费商品的线程     */    private int flag = 0;    private class LinkBlockThread implements Runnable {        @Override        public void run() {            int new_flag = flag++;            System.out.println("启动线程 " + new_flag);            if (new_flag == 0) {                for (int i = 0; i < size; i++) {                    int b = new Random().nextInt(255);                    System.out.println("生产商品:" + b + "号");                    try {                        queue.put(b);                    } catch (InterruptedException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }                    System.out.println("仓库中还有商品:" + queue.size() + "个");                    try {                        Thread.sleep(100);                    } catch (InterruptedException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }                }            } else {                for (int i = 0; i < size / 2; i++) {                    try {                        int n = queue.take();                        System.out.println("消费者买去了" + n + "号商品");                    } catch (InterruptedException e) {                        // TODO Auto-generated catch block                        e.printStackTrace();                    }                    System.out.println("仓库中还有商品:" + queue.size() + "个");                    try {                        Thread.sleep(100);                    } catch (Exception e) {                        // TODO: handle exception                    }                }            }        }    }    public static void main(String[] args) {        BlockingSynchronizedThread bst = new BlockingSynchronizedThread();        LinkBlockThread lbt = bst.new LinkBlockThread();        Thread thread1 = new Thread(lbt);        Thread thread2 = new Thread(lbt);        thread1.start();        thread2.start();    }}

注:BlockingQueue<E>定义了阻塞队列的常用方法,尤其是三种添加元素的方法,我们要多加注意,当队列满时:


  add()方法会抛出异常


  offer()方法返回false


  put()方法会阻塞

7.使用原子变量实现线程同步

需要使用线程同步的根本原因在于对普通变量的操作不是原子的。
那么什么是原子操作呢?
原子操作就是指将读取变量值、修改变量值、保存变量值看成一个整体来操作
即-这几种行为要么同时完成,要么都不完成。
在java的util.concurrent.atomic包中提供了创建了原子类型变量的工具类,
使用该类可以简化线程同步。
其中AtomicInteger 表可以用原子方式更新int的值,可用在应用程序中(如以原子方式增加的计数器),
但不能用于替换Integer;可扩展Number,允许那些处理机遇数字类的工具和实用工具进行统一访问。
AtomicInteger类常用方法:
AtomicInteger(int initialValue) : 创建具有给定初始值的新的AtomicInteger
addAddGet(int dalta) : 以原子方式将给定值与当前值相加
get() : 获取当前值
代码实例:
只改Bank类,其余代码与上面第一个例子同

class Bank {        private AtomicInteger account = new AtomicInteger(100);        public AtomicInteger getAccount() {            return account;        }        public void save(int money) {            account.addAndGet(money);        }    }

补充--原子操作主要有:
  对于引用变量和大多数原始变量(long和double除外)的读写操作;
  对于所有使用volatile修饰的变量(包括long和double)的读写操作。

0 0
原创粉丝点击