运行期优化

来源:互联网 发布:mac 安卓手机助手 编辑:程序博客网 时间:2024/05/16 11:47

即时编译器JIT

1.解释器与编译器

   尽管并不是所有的Java虚拟机都采用解释器与编译器并存的架构,但许多主流的商用虚拟机,如HotSpotJ9等,都同时包含解释器与编译器。 解释器与编译器两者各有优势:当程序需要迅速启动和执行的时候,解释器可以首先发挥作用,省去编译的时间,立即执行。在程序运行后,随着时间的推移,编译器逐渐发挥作用,把越来越多的代码编译成本地代码之后,可以获取更高的执行效率。 当程序运行环境中内存资源限制较大(如部分嵌入式系统中),可以使用解释执行节约内存,反之可以使用编译执行来提升效率。 同时,解释器还可以作为编译器激进优化时的一个逃生门,让编译器根据概率选择一些大多数时候都能提升运行速度的优化手段,当激进优化的假设不成立,如加载了新类后类型继承结构出现变化、出现罕见陷阱Uncommon Trap)时可以通过逆优化(Deoptimization)退回到解释状态继续执行。
   HotSpot虚拟机中内置了两个即时编译器,分别称为Client CompilerServer Compiler,或者简称为C1编译器和C2编译器(也叫Opto编译器)。 目前主流的HotSpot虚拟机中,默认采用解释器与其中一个编译器直接配合的方式工作,程序使用哪个编译器,取决于虚拟机运行的模式,HotSpot虚拟机会根据自身版本与宿主机器的硬件性能自动选择运行模式,用户也可以使用“-client”“-server”参数去强制指定虚拟机运行在Client模式或Server模式。
   无论采用的编译器是Client Compiler还是Server Compiler,解释器与编译器搭配使用的方式在虚拟机中称为混合模式Mixed Mode),用户可以使用参数“-Xint”强制虚拟机运行于解释模式Interpreted Mode),这时编译器完全不介入工作,全部代码都使用解释方式执行。 另外,也可以使用参数“-Xcomp”强制虚拟机运行于编译模式Compiled Mode,这时将优先采用编译方式执行程序,但是解释器仍然要在编译无法进行的情况下介入执行过程,可以通过虚拟机的“-version”命令的输出结果显示出这3种模式。

   为了在程序启动响应速度与运行效率之间达到最佳平衡,HotSpot虚拟机还会逐渐启用分层编译(Tiered Compilation)的策略。分层编译根据编译器编译、 优化的规模与耗时,划分出不同的编译层次,其中包括:
0层,程序解释执行,解释器不开启性能监控功能(Profiling),可触发第1层编译。
1层,也称为C1编译,将字节码编译为本地代码,进行简单、 可靠的优化,如有必要将加入性能监控的逻辑。
2层(或2层以上),也称为C2编译,也是将字节码编译为本地代码,但是会启用一些编译耗时较长的优化,甚至会根据性能监控信息进行一些不可靠的激进优化。
   实施分层编译后,Client CompilerServer Compiler将会同时工作,许多代码都可能会被多次编译,用Client Compiler获取更高的编译速度,用Server Compiler来获取更好的编译质量,在解释执行的时候也无须再承担收集性能监控信息的任务。

2.编译对象与触发条件

   在运行过程中会被即时编译器编译的热点代码有两类,即:被多次调用的方法。被多次执行的循环体。
   一个方法被调用得多了,方法体内代码执行的次数自然就多,它成为热点代码是理所当然的。 而后者则是为了解决一个方法只被调用过一次或少量的几次,但是方法体内部存在循环次数较多的循环体的问题,这样循环体的代码也被重复执行多次,
因此这些代码也应该认为是热点代码
   对于第一种情况,由于是由方法调用触发的编译,因此编译器理所当然地会以整个方法作为编译对象,这种编译也是虚拟机中标准的JIT编译方式。 而对于后一种情况,尽管编译动作是由循环体所触发的,但编译器依然会以整个方法(而不是单独的循环体)作为编译对象。 这种编译方式因为编译发生在方法执行过程之中,因此形象地称之为栈上替换(On Stack Replacement,简称为OSR编译,即方法栈帧还在栈上,方法就被替换了)。
   判断一段代码是不是热点代码,是不是需要触发即时编译,这样的行为称为热点探测(Hot Spot Detection),其实进行热点探测并不一定要知道方法具体被调用了多少次,目前主要的热点探测判定方式有两种,分别如下。
   基于采样的热点探测(Sample Based Hot Spot Detection):采用这种方法的虚拟机会周期性地检查各个线程的栈顶,如果发现某个(或某些)方法经常出现在栈顶,那这个方法就是热点方法。 基于采样的热点探测的好处是实现简单、 高效,还可以很容易地获取方法调用关系(将调用堆栈展开即可),缺点是很难精确地确认一个方法的热度,容易因为受到线程阻塞或别的外界因素的影响而扰乱热点探测。
   基于计数器的热点探测(Counter Based Hot Spot Detection):采用这种方法的虚拟机会为每个方法(甚至是代码块)建立计数器,统计方法的执行次数,如果执行次数超过一定的阈值就认为它是热点方法。 这种统计方法实现起来麻烦一些,需要为每个方法建立并维护计数器,而且不能直接获取到方法的调用关系,但是它的统计结果相对来说更加精确和严谨。
   在HotSpot虚拟机中使用的是第二种——基于计数器的热点探测方法,因此它为每个方法准备了两类计数器:方法调用计数器(Invocation Counter)和回边计数器(Back Edge Counter)。在确定虚拟机运行参数的前提下,这两个计数器都有一个确定的阈值,当计数器超过阈值溢出了,就会触发JIT编译。
2.1.方法调用计数器

   这个计数器就用于统计方法被调用的次数,它的默认阈值在Client模式下是1500次,在Server模式下是10 000次,这个阈值可以通过虚拟机参数-XXCompileThreshold来人为设定。 当一个方法被调用时,会先检查该方法是否存在被JIT编译过的版本,如果存在,则优先使用编译后的本地代码来执行。 如果不存在已被编译过的版本,则将此方法的调用计数器值加1,然后判断方法调用计数器与回边计数器值之和是否超过方法调用计数器的阈值。 如果已超过阈值,那么将会向即时编译器提交一个该方法的代码编译请求。
   如果不做任何设置,执行引擎并不会同步等待编译请求完成,而是继续进入解释器按照解释方式执行字节码,直到提交的请求被编译器编译完成。 当编译工作完成之后,这个方法的调用入口地址就会被系统自动改写成新的,下一次调用该方法时就会使用已编译的版本。


   如果不做任何设置,方法调用计数器统计的并不是方法被调用的绝对次数,而是一个相对的执行频率,即一段时间之内方法被调用的次数。 当超过一定的时间限度,如果方法的调用次数仍然不足以让它提交给即时编译器编译,那这个方法的调用计数器就会被减少一半,这个过程称为方法调用计数器热度的衰减(Counter Decay),而这段时间就称为此方法统计的半衰周期(Counter Half Life Time)。 进行热度衰减的动作是在虚拟机进行垃圾收集时顺便进行的,可以使用虚拟机参数-XX-UseCounterDecay来关闭热度衰减,让方法计数器统计方法调用的绝对次数,这样,只要系统运行时间足够长,绝大部分方法都会被编译成本地代码。 另外,可以使用-XXCounterHalfLifeTime参数设置半衰周期的时间,单位是秒。

2.2.回边计数器

   它的作用是统计一个方法中循环体代码执行的次数,在字节码中遇到控制流向后跳转的指令称为回边Back Edge)。 显然,建立回边计数器统计的目的就是为了触发OSR编译。
   当解释器遇到一条回边指令时,会先查找将要执行的代码片段是否有已经编译好的版本,如果有,它将会优先执行已编译的代码,否则就把回边计数器的值加1,然后判断方法调用计数器与回边计数器值之和是否超过回边计数器的阈值。 当超过阈值的时候,将会提交一个OSR编译请求,并且把回边计数器的值降低一些,以便继续在解释器中执行循环,等待编译器输出编译结果。

   与方法计数器不同,回边计数器没有计数热度衰减的过程,因此这个计数器统计的就是该方法循环执行的绝对次数。 当计数器溢出的时候,它还会把方法计数器的值也调整到溢出状态,这样下次再进入该方法的时候就会执行标准编译过程。

3.编译过程
   在默认设置下,无论是方法调用产生的即时编译请求,还是OSR编译请求,虚拟机在代码编译器还未完成之前,都仍然将按照解释方式继续执行,而编译动作则在后台的编译线程中进行。 用户可以通过参数-XX-BackgroundCompilation来禁止后台编译,在禁止后台编译后,一旦达到JIT的编译条件,执行线程向虚拟机提交编译请求后将会一直等待,直到编译过程完成后再开始执行编译器输出的本地代码。


编译优化

   以编译方式执行本地代码比解释方式更快,之所以有这样的共识,除去虚拟机解释执行字节码时额外消耗时间的原因外,还有一个很重要的原因就是虚拟机设计团队几乎把对代码的所有优化措施都集中在了即时编译器之中。

公共子表达式消除

   如果一个表达式E已经计算过了,并且从先前的计算到现在E中所有变量的值都没有发生变化,那么E的这次出现就成为了公共子表达式。 对于这种表达式,没有必要花时间再对它进行计算,只需要直接用前面计算过的表达式结果代替E就可以了。 如果这种优化仅限于程序的基本块内,便称为局部公共子表达式消除(Local Common Subexpression Elimination),如果这种优化的范围涵盖了多个基本块,那就称为全局公共子表达式消除(Global Common Subexpression Elimination)。 

数组边界检查消除

   Java语言中访问数组元素foo[i]的时候系统将会自动进行上下界的范围检查,即检查i必须满足i=0&&ifoo.length
个条件,否则将抛出一个运行时异常:java.lang.ArrayIndexOutOfBoundsException。 
   无论如何,为了安全,数组边界检查肯定是必须做的,但数组边界检查是不是必须在运行期间一次不漏地检查则是可以商量的事情。 例如下面这个简单的情况:数组下标是一个常量,如foo[3],只要在编译期根据数据流分析来确定foo.length的值,并判断下标“3”没有越界,执行的时候就无须判断了。 更加常见的情况是数组访问发生在循环之中,并且使用循环变量来进行数组访问,如果编译器只要通过数据流分析就可以判定循环变量的取值范围永远在区间[0foo.length)之内,那在整个循环中就可以把数组的上下界检查消除,这可以节省很多次的条件判断操作。

方法内联

   除了消除方法调用的成本之外,它更重要的意义是为其他优化手段建立良好的基础。
   方法内联的优化行为看起来很简单,不过是把目标方法的代码复制到发起调用的方法之中,避免发生真实的方法调用而已。 但实际上Java虚拟机中的内联过程远远没有那么简单,因为如果不是即时编译器做了一些特别的努力,按照经典编译原理的优化理论,大多数的Java方法都无法进行内联。

   只有使用invokespecial指令调用的私有方法、 实例构造器、 父类方法以及使用invokestatic指令进行调用的静态方法才是在编译期进行解析的,除了上述4种方法之外,其他的Java方法调用都需要在运行时进行方法接收者的多态选择,并且都有可能存在多于一个版本的方法接收者(最多再除去被final修饰的方法这种特殊情况,尽管它使用invokevirtual指令调用,但也是非虚方法,Java语言规范中明确说明了这点),简而言之,Java语言中默认的实例方法是虚方法。对于一个虚方法,编译期做内联的时候根本无法确定应该使用哪个方法版本
   为了解决虚方法的内联问题,Java虚拟机设计团队想了很多办法,首先是引入了一种名为类型继承关系分析Class Hierarchy Analysis,CHA)的技术,这是一种基于整个应用程序的类型分析技术,它用于确定在目前已加载的类中,某个接口是否有多于一种的实现,某个类是否存在子类、 子类是否为抽象类等信息。
   编译器在进行内联时,如果是非虚方法,那么直接进行内联就可以了,这时候的内联是有稳定前提保障的。 如果遇到虚方法,则会向CHA查询此方法在当前程序下是否有多个目标版本可供选择,如果查询结果只有一个版本,那也可以进行内联,不过这种内联就属于激进优化,需要预留一个逃生门Guard条件不成立时的Slow Path),称为守护内联(Guarded Inlining)。 如果程序的后续执行过程中,虚拟机一直没有加载到会令这个方法的接收者的继承关系发生变化的类,那这个内联优化的代码就可以一直使用下去。 但如果加载了导致继承关系发生变化的新类,那就需要抛弃已经编译的代码,退回到解释状态执行,或者重新进行
编译。

   如果向CHA查询出来的结果是有多个版本的目标方法可供选择,则编译器还将会进行最后一次努力,使用内联缓存(Inline Cache)来完成方法内联,这是一个建立在目标方法正常入口之前的缓存,它的工作原理大致是:在未发生方法调用之前,内联缓存状态为空,当第一次调用发生后,缓存记录下方法接收者的版本信息,并且每次进行方法调用时都比较接收者版本,如果以后进来的每次调用的方法接收者版本都是一样的,那这个内联还可以一直用下去。 如果发生了方法接收者不一致的情况,就说明程序真正使用了虚方法的多态特性,这时才会取消内联,查找虚方法表进行方法分派。

逃逸分析

   逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他方法中,称为方法逃逸。 甚至还有可能被外部线程访问到,譬如赋值给类变量或可以在其他线程中访问的实例变量,称为线程逃逸。
   如果能证明一个对象不会逃逸到方法或线程之外,也就是别的方法或线程无法通过任何途径访问到这个对象,则可能为这个变量进行一些高效的优化,如下所示。
   栈上分配(Stack Allocation):Java虚拟机中,在Java堆上分配创建对象的内存空间几乎是Java程序员都清楚的常识了,Java堆中的对象对于各个线程都是共享和可见的,只要持有这个对象的引用,就可以访问堆中存储的对象数据。 虚拟机的垃圾收集系统可以回收堆中不再使用的对象,但回收动作无论是筛选可回收对象,还是回收和整理内存都需要耗费时间。如果确定一个对象不会逃逸出方法之外,那让这个对象在栈上分配内存将会是一个很不错的主意,对象所占用的内存空间就可以随栈帧出栈而销毁。 在一般应用中,不会逃逸的局部对象所占的比例很大,如果能使用栈上分配,那大量的对象就会随着方法的结束而自动销毁了,垃圾收集系统的压力将会小很多。
   同步消除(Synchronization Elimination):线程同步本身是一个相对耗时的过程,如果逃逸分析能够确定一个变量不会逃逸出线程,无法被其他线程访问,那这个变量的读写肯定就不会有竞争,对这个变量实施的同步措施也就可以消除掉。
   标量替换(Scalar Replacement):标量(Scalar)是指一个数据已经无法再分解成更小的数据来表示了,Java虚拟机中的原始数据类型(intlong等数值类型以及reference类型等)都不能再进一步分解,它们就可以称为标量。 相对的,如果一个数据可以继续分解,那它就称作聚合量(Aggregate),Java中的对象就是最典型的聚合量。 如果把一个Java对象拆散,根据程序访问的情况,将其使用到的成员变量恢复原始类型来访问就叫做标量替换。 如果逃逸分析证明一个对象不会被外部访问,并且这个对象可以被拆散的话,那程序真正执行的时候将可能不创建这个对象,而改为直接创建它的若干个被这个方法使用到的成员变量来代
替。 将对象拆分后,除了可以让对象的成员变量在栈上(栈上存储的数据,有很大的概率会被虚拟机分配至物理机器的高速寄存器中存储)分配和读写之外,还可以为后续进一步的优化手段创建条件。


0 0
原创粉丝点击