TensorFlow入门一

来源:互联网 发布:安装ubuntu系统 编辑:程序博客网 时间:2024/06/05 21:53


cuda与tensorflow安装

按以往经验,tensorflow安装一条pip命令就可以解决,前提是有fq工具,没有的话去找找墙内别人分享的地址。而坑多在安装支持gpu,需预先安装英伟达的cuda,这里坑比较多,推荐使用ubuntu deb的安装方式来安装cuda,run.sh的方式总感觉有很多问题,cuda的安装具体可以参考。 注意链接里面的tensorflow版本是以前的,tensorflow 现在官方上的要求是cuda7.5+cudnnV4,请在安装的时候注意下。

Hello World

import tensorflow as tfhello = tf.constant('Hello, TensorFlow!')sess = tf.Session()print sess.run(hello)

首先,通过tf.constant创建一个常量,然后启动Tensorflow的Session,调用sess的run方法来启动整个graph。 接下来我们做下简单的数学的方法:

import tensorflow as tfa = tf.constant(2)b = tf.constant(3)with tf.Session() as sess:    print "a=2, b=3"    print "Addition with constants: %i" % sess.run(a+b)    print "Multiplication with constants: %i" % sess.run(a*b)# outputa=2, b=3Addition with constants: 5Multiplication with constants: 6

接下来用tensorflow的placeholder来定义变量做类似计算: placeholder的使用见https://www.tensorflow.org/versions/r0.8/api_docs/python/io_ops.html#placeholder

import tensorflow as tfa = tf.placeholder(tf.int16)b = tf.placeholder(tf.int16)add = tf.add(a, b)mul = tf.mul(a, b)with tf.Session() as sess:    # Run every operation with variable input    print "Addition with variables: %i" % sess.run(add, feed_dict={a: 2, b: 3})    print "Multiplication with variables: %i" % sess.run(mul, feed_dict={a: 2, b: 3})# output:Addition with variables: 5Multiplication with variables: 6matrix1 = tf.constant([[3., 3.]])matrix2 = tf.constant([[2.],[2.]])product=tf.matmul(matrix1,matrix2)with tf.Session() as sess:    result = sess.run(product)    print result    #result:    12

线性回归

以下代码来自https://github.com/aymericdamien/TensorFlow-Examples/,仅作学习用

import tensorflow as tfimport numpyimport matplotlib.pyplot as pltrng = numpy.random# Parameterslearning_rate = 0.01training_epochs = 2000display_step = 50# Training Datatrain_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])n_samples = train_X.shape[0]# tf Graph InputX = tf.placeholder("float")Y = tf.placeholder("float")# Create Model# Set model weightsW = tf.Variable(rng.randn(), name="weight")b = tf.Variable(rng.randn(), name="bias")# Construct a linear modelactivation = tf.add(tf.mul(X, W), b)# Minimize the squared errorscost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 lossoptimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent# Initializing the variablesinit = tf.initialize_all_variables()# Launch the graphwith tf.Session() as sess:    sess.run(init)    # Fit all training data    for epoch in range(training_epochs):        for (x, y) in zip(train_X, train_Y):            sess.run(optimizer, feed_dict={X: x, Y: y})        #Display logs per epoch step        if epoch % display_step == 0:            print "Epoch:", '%04d' % (epoch+1), "cost=", \                "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \                "W=", sess.run(W), "b=", sess.run(b)    print "Optimization Finished!"    print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \          "W=", sess.run(W), "b=", sess.run(b)    #Graphic display    plt.plot(train_X, train_Y, 'ro', label='Original data')    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')    plt.legend()    plt.show()

逻辑回归

import tensorflow as tf# Import MINST datafrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("/tmp/data/", one_hot=True)# Parameterslearning_rate = 0.01training_epochs = 25batch_size = 100display_step = 1# tf Graph Inputx = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes# Set model weightsW = tf.Variable(tf.zeros([784, 10]))b = tf.Variable(tf.zeros([10]))# Construct modelpred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax# Minimize error using cross entropycost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))# Gradient Descentoptimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)# Initializing the variablesinit = tf.initialize_all_variables()# Launch the graphwith tf.Session() as sess:    sess.run(init)    # Training cycle    for epoch in range(training_epochs):        avg_cost = 0.        total_batch = int(mnist.train.num_examples/batch_size)        # Loop over all batches        for i in range(total_batch):            batch_xs, batch_ys = mnist.train.next_batch(batch_size)            # Run optimization op (backprop) and cost op (to get loss value)            _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,                                                          y: batch_ys})            # Compute average loss            avg_cost += c / total_batch        # Display logs per epoch step        if (epoch+1) % display_step == 0:            print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)    print "Optimization Finished!"    # Test model    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))    # Calculate accuracy    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))    print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})    # result :    Epoch: 0001 cost= 29.860467369    Epoch: 0002 cost= 22.001451784    Epoch: 0003 cost= 21.019925554    Epoch: 0004 cost= 20.561320320    Epoch: 0005 cost= 20.109135756    Epoch: 0006 cost= 19.927862290    Epoch: 0007 cost= 19.548687116    Epoch: 0008 cost= 19.429119071    Epoch: 0009 cost= 19.397068211    Epoch: 0010 cost= 19.180813479    Epoch: 0011 cost= 19.026808132    Epoch: 0012 cost= 19.057875510    Epoch: 0013 cost= 19.009575057    Epoch: 0014 cost= 18.873240641    Epoch: 0015 cost= 18.718575359    Epoch: 0016 cost= 18.718761925    Epoch: 0017 cost= 18.673640560    Epoch: 0018 cost= 18.562128253    Epoch: 0019 cost= 18.458205289    Epoch: 0020 cost= 18.538211225    Epoch: 0021 cost= 18.443384213    Epoch: 0022 cost= 18.428727668    Epoch: 0023 cost= 18.304270616    Epoch: 0024 cost= 18.323529782    Epoch: 0025 cost= 18.247192113    Optimization Finished!    (10000, 784)    Accuracy 0.9206

这里有个小插曲,ipython notebook在一个notebook打开时,一直在占用GPU资源,可能是之前有一个notebook一直打开着,然后占用着GPU资源,然后在计算Accuracy的”InternalError: Dst tensor is not initialized.” 然后找了github上面也有这个问题InternalError: Dst tensor is not initialized.,可以肯定是GPU的memory相关的问题,所以就尝试加上tf.device(‘/cpu:0’),将Accuracy这步拉到cpu上计算,但是又出现OOM的问题,最后nvidia-smi时,发现有一个python脚本一直占用3g多的显存,把它kill之后恢复了,之前还比较吐槽怎么可能10000*784个float就把显存撑爆呢,原来是自己的问题。

这里逻辑回归,model是一个softmax函数用来做多元分类,大概意思是选择10当中最后预测概率最高作为最终的分类。

其实基本的tensorflow没有特别好讲的,语法的课程什么可以去看看基本的文档,之后我会找一点经典有趣的tensorflow的代码应用来看看,毕竟『show me the code 』才是程序猿应有的态度。

0 0