支持向量机

来源:互联网 发布:linux监控服务器性能 编辑:程序博客网 时间:2024/06/05 19:57

一.硬间隔支持向量机

假设给定一个特征空间上的训练数据集

T={(x1,y1),(x2,y2),(xn,yn)}

其中,xiRn,yi{+1,1},i=1,2,,Nxi为第i个特征向量,yixi的类标记,当yi=+1时,称xi正例;当yi=1时,称xi为负例。再假设样本时线性可分的。

学习的目标是在特征空间找到一个分离超平面,能将实例分到不同的类。分离超平面对应于方程wx+b=0,可用(w,b)来表示。分离超平面将特征空间划分为两部分,一部分是正类,一部分是负类。

一般地,当训练数据集线性可分时,存在无穷多个分离超平面可将两类数据正确分开。线性可分支持向量机利用间隔最大化求最优分离超平面,这时,解是唯一的。

1.函数间隔和几何间隔

一般来说,一个点距离分离超平面的远近可以表示分类预测的确信度。在超平面wx+b=0确定的情况下,|wx+b|能够相对的表示点x距离超平面的远近。而wx+b的符号与类标记y的符号是否一致能够表示分类是否正确。所以可用量y(wx+b)来表示分类的正确性及确信度,这就是函数间隔的概念。

函数间隔

对于给定的训练数据集T和超平面(w,b),定义超平面(w,b)关于样本点(xi,yi)的函数间隔为

γi^=yi(wxi+b)(1)

定义超平面关于样本数据集T的函数间隔为超平面(w,b)关于所有样本点(xi,yi)的函数间隔之最小值,即
γ̂ =mini=1,,Nγi^(2)

函数间隔可以表示分类预测的正确性及确信度。但是选择分离超平面时,只有函数间隔还不够。因为只要成比例的改变w和b,超平面并没有改变,但是函数间隔却发生变化。这一事实启示我们,可以对分离超平面的法向量w加一些约束,如规范化,||w||=1,使得间隔是确定的。这时函数间隔变为几何间隔。

几何间隔

对于给定的训练数据集T和超平面(w,b),定义超平面关于样本点(xi,yi)的几何间隔为

γi=yi(w||w||xi+b||w||)(3)

定义超平面(w,b)关于训练数据集T的几何间隔为超平面(w,b)关于T中所有样本点(xi,yi)的几何间隔之最小值,即
γ=mini=1,,Nγi(4)

2.间隔最大化

支持向量机学习的基本想法是求解能够确定划分训练数据集并且几何间隔最大的分离超平面。对线性可分的训练数据集而言,线性可分分离超平面有无穷多个,但是几何间隔最大的分离超平面时唯一的。

求得一个几何间隔最大的分离超平面可以表示为 下面的约束最优化问题:

maxw,bγ(5)

s.t.yi(w||w||xi+b||w||)γ,i=1,2,,N(6)

考虑几何间隔和函数间隔的关系,可将上式改写为
maxw,bγ̂ ||w||(7)

s.t.yi(wxi+b)γ̂ ,i=1,2,,N(8)

函数间隔的改变对上面的最优化问题的不等式约束没有影响,对目标函数的优化也没有影响,也就是说,它产生一个等价的最优化问题。这样就可以取γ̂ =1。注意到最大化1||w|| 和最小化 12||w||2是等价的。于是就得到了下面的线性可分支持向量机学习的优化问题
mina,b12||w||2(9)

s.t.yi(wxi+b)10i=1,2,,N(10)

3.对偶问题

对每个不等式(10)引入拉格朗日乘子ai0,i=1,,N,定义拉格朗日函数:

L(w,b,a)=12||w||2+i=1Naii=1Naiyi(wxi+b)(11)

其中,a=(a1,a2,,aN)T为拉格朗日乘子向量。
根据拉格朗日对偶性,原始问题的对偶问题是极大极小问题
maxaminw,bL(w,b,a)

所以,为了得到对偶问题的解,需要先求L(w,b,a)对w,b的极小值,再求对a的极大值。

(1)求 minw,bL(w,b,a)

将拉格朗日函数L(w,b,a)分别对w,b求偏导数并令其等于0.

wL(w,b,a)=wi=1Naiyixi=0bL(w,b,a)=i=1Naiyi=0

得:
w=i=1Naiyixi(12)

i=1Naiyi=0(13)

将式(12)、(13)代入式(11)得
L(w,b,a)==12i=1Nj=1Naiajyiyj(xixj)+i=1Naii=1Naiyi(j=1Najyj(xjxi)+b)12i=1Nj=1Naiajyiyj(xixj)+i=1Nai


minw,bL(w,b,a)=12i=1Nj=1Naiajyiyj(xixj)+i=1Nai

(2)求 minw,bL(w,b,a)对a的极大值,即是对偶问题

maxa12i=1Nj=1Naiajyiyj(xixj)+i=1Nais.t.i=1Naiyi=0ai0i=1,2,,N

上式等价为:
mina12i=1Nj=1Naiajyiyj(xixj)i=1Nais.t.i=1Naiyi=0ai0i=1,2,,N(14)

对上式求得最优解a.
式(9)、(10)求解时有不等式约束,需满足KKT条件
ai0yi(wxi+b)10ai(yi(wxi+b)1)=0

所以
w=j=1Najyjxj(15)

至少有一个ai>0,此时yi(wxi+b)1=0,得
b=yij=1Najyj(xjxi)(16)

可知,w和b只依赖与训练数据中对应与ai>0的样本点,而其他样本点对w和b没有影响,我们将训练数据中对应与ai>0的样本点称为支持向量。

二.软间隔支持向量机

硬间隔支持向量机对线性不可分训练数据时不适用的,因为上述不等式约束不能都成立,即意味着某些样本点(xi,yi)不能满足函数间隔大于等于1的约束条件。为了解决这个问题,可以对每个样本点(xi,yi)引进一个松弛变量ξi0,使函数间隔加上松弛变量大于等于1,这样约束条件变为

yi(wxi+b)1ξi

目标函数由原来的12||w||2变成
12||w||2+Ci=1Nξi

这里,C>0称为惩罚参数,C值大时对误分类的惩罚增大,C值小时对误分类的惩罚减小。最小化目标函数包含两层含义:使12||w||2尽量小间隔尽量大,同时使误分类点的个数尽可能小,C是调和二者的系数。

软间隔支持向量机原始问题为:

minw,b,ξ12||w||2+Ci=1Nξis.t.yi(wxi+b)1ξii=1,,Nξi0i,2,,N(17)

1.对偶问题

原始问题的拉格朗日函数为

L(w,b,ξ,a,μ)=12||w||2+Ci=1Nξii=1Nai(yi(wxi+b)+ξi1)i=1Nμiξi(18)

其中ai0,μi0
先求L对w,b,ξi的极小。
wLbLξiL===wi=1Naiyixi=0i=1Naiyi=0Caiμi=0(19)(20)(21)

将式(19)(20)(21),代入(18),得
minw,b,ξiL=12i=1Nj=1Naiajyiyj(xixj)+i=1Nai(22)

再对minw,b,ξiL求a的最大值
maxa12i=1Nj=1Naiajyiyj(xixj)+i=1Naiai0μi0Caiμi=0i=1Naiyi=0(23)(24)(25)(26)(27)

将(24)、(25)、(26)消去ui 得到不等式0aiC。再将目标函数求极大转为求极小,得到如下对偶问题
mina12i=1Nj=1Naiajyiyj(xixj)i=1Naii=1Naiyi=00aiC(28)(29)(30)

原始问题是凸二次规划问题,满足kkt条件
wL=wi=1Naiyixi=0bL=i=1Naiyi=0ξiL=Caiμi=0ai(yi(wxi+b)+ξi1)=0μiξi=0yi(wxi+b)+ξi10ξi0ai0(31)(32)(33)(34)(35)(36)(37)(38)

若存在0<ai<C,则0<ui<C,ξi=0,yi(wxi+b)+ξi1=0 。所以
w=i=1Naiyixib=yij=1Najyj(xjxi)(39)

三.非线性支持向量机

1.核技巧

非线性问题往往不好解,所以希望能用解线性分类问题的方法解决这个问题。所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题,通过解变换后的线性问题的方法求解原来的非线性问题。

核函数的定义

设x是输入空间,H是特征空间,如果存在一个从x到H的映射

ϕ(x):XH(40)

使得对所有 x,zX,函数K(x,z)满足条件
K(x,z)=ϕ(x)ϕ(z)(41)

则称K(x,z)为核函数,ϕ(x)为映射函数。

核技巧的想法是,在学习核预测中只定义核函数K(x,z),而不显示的定义映射函数ϕ。通常,直接计算K(x,z)比较容易,而通过ϕ(x)ϕ(z)计算K(x,z)并不容易。可以看到,对于给定的和K(x,z),特征空间和映射函数的取法并不唯一。

核函数在支持向量机中的应用

在线性支持向量机的对偶问题中,目标函数和决策函数都只涉及输入实例与实例之间的内积。

此时目标函数成为

mina12i=1Nj=1NaiajyiyjK(x1,xj)i=1Nai(42)

分类决策函数成为
f(x)=sign(wx+b)=sign(i=1Naiyiϕ(xi)ϕ(x)+b)=sign(i=1NaiyiK(xi,x)+b)(43)

常用核函数

1.多项式核函数

K(x,z)=(xz+1)p(44)

2.高斯核函数

K(x,z)=exp(||xz||22σ2)(45)

非线性支持向量机分类器算法

输入:训练数据集T=(x1,y1),,(xN,yN) ,其中xiRn,yi+1,1,i=1,2,N;

输出:分类决策函数

(1)选择适当的核函数K(x,z)和适当的参数C,构造并求解最优化问题

mina12i=1Nj=1NaiajyiyjK(xi,xj)i=1Naii=1Naiyi=00aiC(46)(47)(48)

求得最优解 a=(a1,,aN)T.

(2)选择a的一个正分量0<aj<C,计算

b=yji=1NaiyiK(xi,xj)(49)

(3)构造决策函数
f(x)=sign(i=1NaiyiK(xi,x)+b)(50)

0 0
原创粉丝点击