C# 多线程编程入门

来源:互联网 发布:淘宝倒闭是必然 编辑:程序博客网 时间:2024/06/06 03:19

收集部分C#多线程编程入门级知识

C#通过多线程支持并行执行的代码。一个线程是一个独立执行的路径,可以同时与其他线程一起运行。一个C#客户端程序(Console,WPF,Winows Forms)开始于一个单独的线程,该线程由CLR和操作系统自动地创建,我们称它为主线程,而且可以通过创建附加的线程来实现多线程。


一、使用线程的理由

1、可以使用线程将代码同其他代码隔离,提高应用程序的可靠性。

2、可以使用线程来简化编码。

3、可以使用线程来实现并发执行。

二、基本知识

1、进程与线程:

进程作为操作系统执行程序的基本单位,拥有应用程序的资源,进程包含线程,进程的资源被线程共享,线程不拥有资源。

一个线程类似于你的应用程序正在运行的一个操作系统进程。类似于进程并行运行在一台电脑上,线程并行运行在一个单独的进程中。进程之间是完全隔离的;线程在一定程度上隔离。运行在同一个应用程序下的线程共享堆内存。

2、前台线程和后台线程:通过Thread类新建线程默认为前台线程。当所有前台线程关闭时,所有的后台线程也会被直接终止,不会抛出异常。

3、挂起(Suspend)和唤醒(Resume):由于线程的执行顺序和程序的执行情况不可预知,所以使用挂起和唤醒容易发生死锁的情况,在实际应用中应该尽量少用。

4、阻塞线程:Join,阻塞调用线程,直到该线程终止。

5、终止线程:Abort:抛出 ThreadAbortException 异常让线程终止,终止后的线程不可唤醒。Interrupt:抛出 ThreadInterruptException 异常让线程终止,通过捕获异常可以继续执行。

6、线程优先级:AboveNormal BelowNormal Highest Lowest Normal,默认为Normal。

三、线程怎么工作

1.多线程由一个线程调度器来进行内部管理,一个功能是CLR常常委托给操做系统。

一个线程调度器确保所有激活的线程在执行期间被合适的分配,等待或者阻塞的线程(比如,一个独占锁或者等待用户输入)不占用CPU资源。

2.在单核电脑上,一个线程调度器让时间片在每一个激活的线程中切换。在windows操作系统下,线程切换的时间分片通常为10微秒,远远大于CPU的开销时间(通常小于1微秒)。

3.在一个多核的电脑上,多线程实现了一个混合的时间片和真正的并发,不同的线程同时在不同的CPU上执行代码。还是存在某些时间片,因为操作系统需要服务它自己的线程,包括其他的应用的线程。

4.当一个线程的执行被内部因素打断,比如时间片,则说这个线程是抢占式的。在大部分情形下,一个线程不能控制自己何时何地被抢占。

三、线程的使用

线程函数通过委托传递,可以不带参数,也可以带参数(只能有一个参数),可以用一个类或结构体封装参数。

需要:

using System.Threading;

using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading.Tasks;using System.Threading;namespace 线程的使用{    class Program    {        static void Main(string[] args)        {            Thread t1 = new Thread(new ThreadStart(TestMethod));//创建一个新线程            Thread t2 = new Thread(new ParameterizedThreadStart(TestMethod));            Thread t3 = new Thread(Count);            Thread t4 = new Thread(Count2);            t3.Start();//开始该线程            t4.Start();//由于循环次数多,可以看到a和数字同时交叉输出            t1.IsBackground = true;            t2.IsBackground = true;            t1.Start();            t2.Start("hello");            Console.ReadKey();        }        public static void TestMethod()        {            Console.WriteLine("不带参数的线程函数");        }        public static void TestMethod(object data)        {            string datastr = data as string;            Console.WriteLine("带参数的线程函数,参数为:{0}", datastr);        }        public static void Count()        {            for (int i = 0; i < 10000; i++)            {                if (0==(i+1)%25)                {                    Console.Write("\r\n");                }                Console.Write(i);                Console.Write(" ");            }            Console.Write("\r\n");        }        public static void Count2()        {            for (int i = 0; i < 10000; i++)            {                if (0 == (i + 1) % 25)                {                    Console.Write("\r\n");                }                Console.Write("a");                Console.Write(" ");            }            Console.Write("\r\n");        }    }}
一旦开始,一个线程的IsAlive属性返回true,直到这个线程结束。当传递给线程的构造函数的委托完成执行时,这个线程结束。一旦结束,这个线程不能重启。

四、线程池

由于线程的创建和销毁需要耗费一定的开销,过多的使用线程会造成内存资源的浪费,出于对性能的考虑,于是引入了线程池的概念。线程池维护一个请求队列,线程池的代码从队列提取任务,然后委派给线程池的一个线程执行,线程执行完不会被立即销毁,这样既可以在后台执行任务,又可以减少线程创建和销毁所带来的开销。

线程池线程默认为后台线程(IsBackground)。

namespace Test{    class Program    {        static void Main(string[] args)        {            //将工作项加入到线程池队列中,这里可以传递一个线程参数            ThreadPool.QueueUserWorkItem(TestMethod, "Hello");            Console.ReadKey();        }        public static void TestMethod(object data)        {            string datastr = data as string;            Console.WriteLine(datastr);        }    }}

五、Task类

使用ThreadPool的QueueUserWorkItem()方法发起一次异步的线程执行很简单,但是该方法最大的问题是没有一个内建的机制让你知道操作什么时候完成,有没有一个内建的机制在操作完成后获得一个返回值。为此,可以使用System.Threading.Tasks中的Task类。

构造一个Task<TResult>对象,并为泛型TResult参数传递一个操作的返回类型。

namespace Test{    class Program    {        static void Main(string[] args)        {            Task<Int32> t = new Task<Int32>(n => Sum((Int32)n), 1000);            t.Start();            t.Wait();            Console.WriteLine(t.Result);            Console.ReadKey();        }        private static Int32 Sum(Int32 n)        {            Int32 sum = 0;            for (; n > 0; --n)                checked{ sum += n;} //结果太大,抛出异常            return sum;        }    }}


一个任务完成时,自动启动一个新任务。
一个任务完成后,它可以启动另一个任务,下面重写了前面的代码,不阻塞任何线程。

namespace Test{    class Program    {        static void Main(string[] args)        {            Task<Int32> t = new Task<Int32>(n => Sum((Int32)n), 1000);            t.Start();            //t.Wait();            Task cwt = t.ContinueWith(task => Console.WriteLine("The result is {0}",t.Result));            Console.ReadKey();        }        private static Int32 Sum(Int32 n)        {            Int32 sum = 0;            for (; n > 0; --n)                checked{ sum += n;} //结果溢出,抛出异常            return sum;        }    }}

六、委托异步执行

委托的异步调用:BeginInvoke() 和 EndInvoke()

namespace Test{    public delegate string MyDelegate(object data);    class Program    {        static void Main(string[] args)        {            MyDelegate mydelegate = new MyDelegate(TestMethod);            IAsyncResult result = mydelegate.BeginInvoke("Thread Param", TestCallback, "Callback Param");            //异步执行完成            string resultstr = mydelegate.EndInvoke(result);        }        //线程函数        public static string TestMethod(object data)        {            string datastr = data as string;            return datastr;        }        //异步回调函数        public static void TestCallback(IAsyncResult data)        {            Console.WriteLine(data.AsyncState);        }    }}

七、线程同步

  1)原子操作(Interlocked):所有方法都是执行一次原子读取或一次写入操作。

  2)lock()语句:避免锁定public类型,否则实例将超出代码控制的范围,定义private对象来锁定。

  3)Monitor实现线程同步

    通过Monitor.Enter() 和 Monitor.Exit()实现排它锁的获取和释放,获取之后独占资源,不允许其他线程访问。

    还有一个TryEnter方法,请求不到资源时不会阻塞等待,可以设置超时时间,获取不到直接返回false。

  4)ReaderWriterLock

    当对资源操作读多写少的时候,为了提高资源的利用率,让读操作锁为共享锁,多个线程可以并发读取资源,而写操作为独占锁,只允许一个线程操作。

  5)事件(Event)类实现同步

    事件类有两种状态,终止状态和非终止状态,终止状态时调用WaitOne可以请求成功,通过Set将时间状态设置为终止状态。

    1)AutoResetEvent(自动重置事件)

    2)ManualResetEvent(手动重置事件)

  6)信号量(Semaphore)

      信号量是由内核对象维护的int变量,为0时,线程阻塞,大于0时解除阻塞,当一个信号量上的等待线程解除阻塞后,信号量计数+1。

      线程通过WaitOne将信号量减1,通过Release将信号量加1,使用很简单。

  7)互斥体(Mutex)

      独占资源,用法与Semaphore相似。

   8)跨进程间的同步

      通过设置同步对象的名称就可以实现系统级的同步,不同应用程序通过同步对象的名称识别不同同步对象。

参考:http://www.cnblogs.com/jackson0714/p/5100372.html

0 0
原创粉丝点击