LinkedList源码解析(JDK1.7)

来源:互联网 发布:日本人口老龄化 知乎 编辑:程序博客网 时间:2024/05/17 23:11

LinkedList底层使用双向链表数据结构,没有容量大小限制,下面进入源码解析:

public class LinkedList<E>    extends AbstractSequentialList<E>    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

通过上面这段类的声明:
实现了List接口,可以进行队列操作,实现了Deque接口可以当作双端队列使用,可以克隆,可以序列化
这里JDK1.7中的源码中参数定义和构造函数相比1.6中有了些许变化,LinkedList不再是循环链表,分别用first和last来存储首尾节点。

    transient int size = 0;    /**     * Pointer to first node.     */    transient Node<E> first;    /**     * Pointer to last node.     */    transient Node<E> last;    /**     * Constructs an empty list.     */    public LinkedList() {    }    /**     * Constructs a list containing the elements of the specified     * collection, in the order they are returned by the collection's     * iterator.     */    public LinkedList(Collection<? extends E> c) {        this();        addAll(c);    }

在首节点前面增加节点:

    private void linkFirst(E e) {        final Node<E> f = first;        final Node<E> newNode = new Node<>(null, e, f);        first = newNode;        if (f == null)            last = newNode;        else            f.prev = newNode;        size++;        modCount++;    }

在末节点后面增加节点:

    void linkLast(E e) {        final Node<E> l = last;        final Node<E> newNode = new Node<>(l, e, null);        last = newNode;        if (l == null)            first = newNode;        else            l.next = newNode;        size++;        modCount++;    }

在具体一个节点前面插入节点:

    void linkBefore(E e, Node<E> succ) {        // assert succ != null;        final Node<E> pred = succ.prev;        final Node<E> newNode = new Node<>(pred, e, succ);        succ.prev = newNode;        if (pred == null)            first = newNode;        else            pred.next = newNode;        size++;        modCount++;    }

如果输入是具体的节点,我们会发现插入操作会很便捷。

    /**     * Unlinks non-null first node f.     */    private E unlinkFirst(Node<E> f) {        // assert f == first && f != null;        final E element = f.item;        final Node<E> next = f.next;        f.item = null;        f.next = null; // help GC        first = next;        if (next == null)            last = null;        else            next.prev = null;        size--;        modCount++;        return element;    }    /**     * Unlinks non-null last node l.     */    private E unlinkLast(Node<E> l) {        // assert l == last && l != null;        final E element = l.item;        final Node<E> prev = l.prev;        l.item = null;        l.prev = null; // help GC        last = prev;        if (prev == null)            first = null;        else            prev.next = null;        size--;        modCount++;        return element;    }    /**     * Unlinks non-null node x.     */    E unlink(Node<E> x) {        // assert x != null;        final E element = x.item;        final Node<E> next = x.next;        final Node<E> prev = x.prev;        if (prev == null) {            first = next;        } else {            prev.next = next;            x.prev = null;        }        if (next == null) {            last = prev;        } else {            next.prev = prev;            x.next = null;        }        x.item = null;        size--;        modCount++;        return element;    }

同理,入参是具体节点时,删除操作速度也很快。

    public E removeFirst() {       final Node<E> f = first;       if (f == null)           throw new NoSuchElementException();       return unlinkFirst(f);    }    public E removeLast() {       final Node<E> l = last;       if (l == null)           throw new NoSuchElementException();       return unlinkLast(l);    }    //这里是方便用户使用,增加了一层方法调用    public void addFirst(E e) {        linkFirst(e);    }    //同上    public void addLast(E e) {        linkLast(e);    }
    //这里contain方法和ArrayList中一定均是遍历查找,效率较差    public boolean contains(Object o) {        return indexOf(o) != -1;    }
    public int indexOf(Object o) {        int index = 0;        if (o == null) {            for (Node<E> x = first; x != null; x = x.next) {                if (x.item == null)                    return index;                index++;            }        } else {            for (Node<E> x = first; x != null; x = x.next) {                if (o.equals(x.item))                    return index;                index++;            }        }        return -1;    }
    //虽然在链表中没有索引概念,但可以通过size大小和遍历查找找到元素,效率较低    public E get(int index) {        checkElementIndex(index);        return node(index).item;    }    //这里在初始用了一次二分查找    Node<E> node(int index) {        if (index < (size >> 1)) {            Node<E> x = first;            for (int i = 0; i < index; i++)                x = x.next;            return x;        } else {            Node<E> x = last;            for (int i = size - 1; i > index; i--)                x = x.prev;            return x;        }    }
    //set本质是也是找到index处元素进行替换,同上    public E set(int index, E element) {        checkElementIndex(index);        Node<E> x = node(index);        E oldVal = x.item;        x.item = element;        return oldVal;    }
    //这里的add方法,相比ArrayList的add的数组拷贝只需要断开链接,插入一个元素。    public void add(int index, E element) {        checkPositionIndex(index);        if (index == size)            linkLast(element);        else            linkBefore(element, node(index));//这里慢在node(index),慢在寻址    }

下面是LinkedList作为队列和双端队列使用的方法介绍,不再过多解释:

    // Queue operations.    public E peek() {        final Node<E> f = first;        return (f == null) ? null : f.item;    }    /**     * Retrieves, but does not remove, the head (first element) of this list.     */    public E element() {        return getFirst();    }    /**     * Retrieves and removes the head (first element) of this list.     */    public E poll() {        final Node<E> f = first;        return (f == null) ? null : unlinkFirst(f);    }    /**     * Retrieves and removes the head (first element) of this list.     */    public E remove() {        return removeFirst();    }    /**     * Adds the specified element as the tail (last element) of this list.     */    public boolean offer(E e) {        return add(e);    }    // Deque operations    /**     * Inserts the specified element at the front of this list.     */    public boolean offerFirst(E e) {        addFirst(e);        return true;    }    /**     * Inserts the specified element at the end of this list.     */    public boolean offerLast(E e) {        addLast(e);        return true;    }    /**     * Retrieves, but does not remove, the first element of this list,     * or returns {@code null} if this list is empty.     */    public E peekFirst() {        final Node<E> f = first;        return (f == null) ? null : f.item;     }    /**     * Retrieves, but does not remove, the last element of this list,     * or returns {@code null} if this list is empty.     */    public E peekLast() {        final Node<E> l = last;        return (l == null) ? null : l.item;    }    /**     * Retrieves and removes the first element of this list,     * or returns {@code null} if this list is empty.     */    public E pollFirst() {        final Node<E> f = first;        return (f == null) ? null : unlinkFirst(f);    }    /**     * Retrieves and removes the last element of this list,     * or returns {@code null} if this list is empty.     */    public E pollLast() {        final Node<E> l = last;        return (l == null) ? null : unlinkLast(l);    }
    //Stack operation,前面的peek方法,当作Stack时也可以使用    public void push(E e) {        addFirst(e);    }    /**     * Pops an element from the stack represented by this list.  In other     * words, removes and returns the first element of this list.     */    public E pop() {        return removeFirst();    }
    //这里是浅克隆,只是复制了元素的引用    public Object clone() {        LinkedList<E> clone = superClone();        // Put clone into "virgin" state        clone.first = clone.last = null;        clone.size = 0;        clone.modCount = 0;        // Initialize clone with our elements        for (Node<E> x = first; x != null; x = x.next)            clone.add(x.item);        return clone;    }

LinkedList总结:
1.排列有序,不可重复
2.底层实用双向链表数据结构
3.查询速度慢,增删快。
这里查询速度慢是确定,相对于ArrayList的索引直接查找到目标元素,LinkedList需要进行遍历操作。
在增加删除上面有待商榷:
通过源码我们可以看到,如果我们入参直接是一个具体的节点,包含前后引用地址,速度一定很快,但更多的时候,我们都是给一个索引来查找我们需要的元素,
这里LinkedList慢在寻址,需要遍历操作,快在只需要改变前后Node的引用地址。
而ArrayList在插入和删除上,慢在数组元素批量的copy,快在寻址。
所以,如果待插入、删除的元素是在数据结构的前半段尤其是非常靠前的位置的时候,LinkedList的效率将大大快过ArrayList,因为ArrayList将批量copy大量的元素;越往后,对于LinkedList来说,因为它是双向链表,所以在第2个元素后面插入一个数据和在倒数第2个元素后面插入一个元素在效率上基本没有差别,但是ArrayList由于要批量copy的元素越来越少,操作速度必然追上乃至超过LinkedList。
一般而言,ArrayList的数组扩容和数组复制均特别耗时,同时LinkedList在增删上稳定性也强些,综合而言,LinkedList在增删上表现优异些。
4.线程不安全。

0 0
原创粉丝点击