三次握手四次分手

来源:互联网 发布:程序员去汽车厂 编辑:程序博客网 时间:2024/04/30 08:59

TCP是什么?

具体的关于TCP是什么,我不打算详细的说了;当你看到这篇文章时,我想你也知道TCP的概念了,想要更深入的了解TCP的工作,我们就继续。它只是一个超级麻烦的协议,而它又是互联网的基础,也是每个程序员必备的基本功。首先来看看OSI的七层模型:


我们需要知道TCP工作在网络OSI的七层模型中的第四层——Transport层,IP在第三层——Network层,ARP在第二层——Data Link层;在第二层上的数据,我们把它叫Frame,在第三层上的数据叫Packet,第四层的数据叫Segment。 同时,我们需要简单的知道,数据从应用层发下来,会在每一层都会加上头部信息,进行封装,然后再发送到数据接收端。这个基本的流程你需要知道,就是每个数据都会经过数据的封装和解封装的过程。 在OSI七层模型中,每一层的作用和对应的协议如下:




【三次握手与四次分手图解】

  • TCP Flags:TCP首部中有6个标志比特,它们中的多个可同时被设置为1,主要是用于操控TCP的状态机的,依次为URGACKPSHRSTSYNFIN。每个标志位的意思如下:
    • URG:此标志表示TCP包的紧急指针域(后面马上就要说到)有效,用来保证TCP连接不被中断,并且督促中间层设备要尽快处理这些数据;
    • ACK:此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1,为1的时候表示应答域有效,反之为0;
    • PSH:这个标志位表示Push操作。所谓Push操作就是指在数据包到达接收端以后,立即传送给应用程序,而不是在缓冲区中排队;
    • RST:这个标志表示连接复位请求。用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据包;
    • SYN:表示同步序号,用来建立连接。SYN标志位和ACK标志位搭配使用,当连接请求的时候,SYN=1,ACK=0;连接被响应的时候,SYN=1,ACK=1;这个标志的数据包经常被用来进行端口扫描。扫描者发送一个只有SYN的数据包,如果对方主机响应了一个数据包回来 ,就表明这台主机存在这个端口;但是由于这种扫描方式只是进行TCP三次握手的第一次握手,因此这种扫描的成功表示被扫描的机器不很安全,一台安全的主机将会强制要求一个连接严格的进行TCP的三次握手;
    • FIN: 表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描。
  • Window:窗口大小,也就是有名的滑动窗口,用来进行流量控制;这是一个复杂的问题,这篇博文中并不会进行总结的;

好了,基本知识都已经准备好了,开始下一段的征程吧。

三次握手又是什么?

TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。三次握手的目的是同步连接双方的序列号和确认号并交换 TCP窗口大小信息。这就是面试中经常会被问到的TCP三次握手。只是了解TCP三次握手的概念,对你获得一份工作是没有任何帮助的,你需要去了解TCP三次握手中的一些细节。

  1. 第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;
  2. 第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;
  3. 第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。

完成了三次握手,客户端和服务器端就可以开始传送数据。以上就是TCP三次握手的总体介绍。

那四次分手呢?

当客户端和服务器通过三次握手建立了TCP连接以后,当数据传送完毕,肯定是要断开TCP连接的啊。那对于TCP的断开连接,这里就有了神秘的“四次分手”。

  1. 第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence NumberAcknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;
  2. 第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment NumberSequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我“同意”你的关闭请求;
  3. 第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入LAST_ACK状态;
  4. 第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。

至此,TCP的四次分手就这么愉快的完成了。当你看到这里,你的脑子里会有很多的疑问,很多的不懂,感觉很凌乱;没事,我们继续总结。

为什么要三次握手?

简言之:1、客户端发送连接请求:SYN报文;

               2、服务端接收后,回复SYN+ACK报文,并分配资源;

              3、客户端接收后,回复ACK报文,并分配资源;

既然总结了TCP的三次握手,那为什么非要三次呢?怎么觉得两次就可以完成了。那TCP为什么非要进行三次连接呢?在谢希仁的《计算机网络》中是这样说的:

为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。

在书中同时举了一个例子,如下:

“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”

这就很明白了,防止了服务器端的一直等待而浪费资源。

为什么要四次分手?

简言之:1、客户端发送中断请求,FIN报文;

               2、服务端接收后,回复ACK报文;

               3、服务端完成后,发送FIN报文,关闭;

               4、客户端接收后,回复ACK报文,等到2MSL后,若没有回复就关闭

那四次分手又是为何呢?TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。

  • FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。(主动方)
  • FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你(ACK信息),稍后再关闭连接。(主动方)
  • CLOSE_WAIT:这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以 close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。(被动方)
  • LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。(被动方)
  • TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FINWAIT1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。(主动方)
  • CLOSED: 表示连接中断。

我想你应该懂了

 【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?

答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。


【问题2】为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

答:虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以最后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。


【问题3】TCP是如何实现可靠传输的?

答:TCP通过下列方式来提供可靠性:
      1、应用数据被分割成TCP认为最适合发送的数据块。这和UDP完全不同,应用程序产生的数据报长度将保持不变。   (将数据截断为合理长度)
      2、当TCP发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到确认,将重发报文段。       (超时重传)
      3、当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常推迟几分之一秒。 (推迟,是对包做完整校验)
      4、 TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP将丢弃这个报文段和不确认收到此报文段(希望发端超时并重发)。      (校验包有错,丢弃报文段,不给出响应,TCP发送数据端,超时时会重发数据)
      5、既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能会失序,因此TCP报文段的到达也可能会失序。如果必要,TCP将对收到的数据进行重新排序,将收到的数据以正确的顺序交给应用层。    (对失序数据进行重新排序,然后才交给应用层)
      6、既然IP数据报会发生重复,TCP的接收端必须丢弃重复的数据。    (对于重复数据,能够丢弃重复数据)
      7、TCP还能提供流量控制。TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。       (TCP可以进行流量控制,通过可变大小的滑动窗口,防止较快主机致使较慢主机的缓冲区溢出)
       

【问题4】TCP与UDP区别?
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保证可靠交付
3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;

     UDP是面向报文的,没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP首部开销20字节;UDP的首部开销小,只有8个字节
6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道


======================================================================

这里假设重传时分组依然会丢失,当在不同状态(CLOSED除外)分组丢失后,最终会关闭套接字而回到CLOSED状态。下面逐个分析各状态时 
的情景。 

SYN_SENT 
   连接阶段第1次握手,客户端发送SYN分组但丢失,因此超时收不到服务端的SYN+ACK而重传SYN,尝试几次后放弃,关闭套接字。 

SYN_RCVD 
   1)连接阶段第2次握手,服务端响应SYN+ACK分组但丢失,因此超时收不到客户端的ACK而重传SYN+ACK,尝试几次后放弃,发送RST并关闭套接字。 
   2)连接阶段第3次握手,客户端发送ACK分组但丢失,因此服务端超时收不到ACK而重传SYN+ACK,尝试几次后放弃,发送RST并关闭套接字。


         注意:超时时长一般在 30s-2min

ESTABLISHED 
   1)连接阶段第3次握手,客户端发送ACK分组后,虽然丢失但会进入该状态(因为ACK不需要确认),但此时服务端还处于SYN_RCVD状态,因为超时收不到客户端的ACK而重传SYN+ACK、尝试几次后放弃、发送RST并关闭套接字,而此时客户端收到RST。 
   2)数据传输阶段,当超时没有收到数据的确认时,会重传数据,尝试几次后放弃,发送RST并关闭套接字。 

FIN_WAIT_1 
   1)关闭阶段第1次握手,客户端发送的FIN分组丢失,因此超时收不到服务端的ACK而重传FIN,尝试几次后放弃,发送RST并关闭套接字。 
   2)关闭阶段第2次握手,客户端发送的FIN分组到达服务端,但服务端响应的ACK分组丢失,因此客户端超时收不到ACK而重传FIN,尝试几次后放弃,发送RST并关闭套接字。 
  
FIN_WAIT_2 
   关闭阶段第3次握手,服务端发送的FIN分组丢失,因此超时收不到客户端的ACK而重传FIN、尝试几次后放弃、发送RST并关闭套接字,而此时客户端收到RST。 
  
CLOSING 
   本端发送的ACK分组丢失,导致对端超时收不到ACK而重传FIN、尝试几次后放弃、发送RST并关闭套接字,而此时本端收到RST。 

TIME_WAIT 
   关闭阶段第4次握手,客户端发送的ACK分组丢失,导致服务端超时收不到ACK而重传FIN、尝试几次后放弃、发送RST并关闭套接字,而此时客户端收到RST。 

CLOSE_WAIT 
   服务端发送的ACK分组丢失,导致客户端超时收不到ACK而重传FIN、尝试几次后放弃、发送RST并关闭套接字,而此时服务端收到RST。 

LAST_ACK 
   服务端发送的FIN分组丢失,导致超时收不到客户端的ACK而重传FIN、尝试几次后放弃、发送RST并关闭套接字。  

0 0
原创粉丝点击