k均值聚类算法

来源:互联网 发布:ssh 客户端 for mac 编辑:程序博客网 时间:2024/05/17 03:17

K-means聚类算法 

一、K-means聚类原理

1.1 聚类算法的原理 

         我们经常接触到的聚类分析,一般都是数值聚类,一种常见的做法是同时提取 N 种特征,将它们放在一起组成一个 N 维向量,从而得到一个从原始数据集合到 N 维向量空间的映射——总是需要显式地或者隐式地完成这样一个过程,然后基于某种规则进行分类,在该规则下,同组分类具有最大的相似性。 

         聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的 目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。

1.2 K-means聚类原理 

         算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数 已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着 已经收敛,因此算法结束。  

1.3 K-means聚类步骤  

算法步骤一般如下:

 1、从D中随机取k个元素,作为k个簇的各自的中心。

 2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。

 3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。

 4、将D中全部元素按照新的中心重新聚类。

 5、重复第4步,直到每个簇的中心基本不再变化。

 6、将结果输出。 

1.4 K-means聚类简单实例 

         对数据点进行聚类,详细步骤如下所示: 

         首先 3 个中心点被随机初始化,所有的数据点都还没有进行聚类,默认全部都标记为红色,如下图所示:

                                         

然后进入第一次迭代:按照初始的中心点位置为每个数据点着上颜色,重新计算 3 个中心点,结果如下图所示:

                                      

可以看到,由于初始的中心点是随机选的,这样得出来的结果并不是很好,接下来是下一次迭代的结果:

                                                 

可以看到大致形状已经出来了。再经过两次迭代之后,基本上就收敛了,最终结果如下:

                                           

存在问题

K均值聚类

存在的问题
K-means 算法的特点——采用两阶段反复循环过程算法,结束的条件是不再有数据元素被重新分配:

指定聚类

即指定数据到某一个聚类,使得它与这个聚类中心的距离比它到其它聚类中心的距离要近。

修改聚类中心

优点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<<N,t<<N 。

算法优点

K-Means聚类算法的优点主要集中在:
1.算法快速、简单;
2.对大数据集有较高的效率并且是可伸缩性的;
3.时间复杂度近于线性,而且适合挖掘大规模数据集。K-Means聚类算法的时间复杂度是O(nkt) ,其中n代表数据集中对象的数量,t代表着算法迭代的次数,k代表着簇的数目。[1] 

算法缺点

k-means 算法缺点

① 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。这也是 K-means 算法的一个不足。有的算法是通过类的自动合并和分裂,得到较为合理的类型数目 K,例如 ISODATA 算法。关于 K-means 算法中聚类数目K 值的确定在文献中,是根据方差分析理论,应用混合 F统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵的 RPCL 算法,并逐步删除那些只包含少量训练数据的类。而文献中使用的是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。
② 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果,这也成为 K-means算法的一个主要问题。对于该问题的解决,许多算法采用遗传算法(GA),例如文献 中采用遗传算法(GA)进行初始化,以内部聚类准则作为评价指标。
③ 从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。所以需要对算法的时间复杂度进行分析、改进,提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的侯选集。而在文献中,使用的 K-means 算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

0 0
原创粉丝点击