[caffe笔记006]:caffe中的softmax层推导

来源:互联网 发布:图像压缩算法问题 编辑:程序博客网 时间:2024/06/16 10:10

1. SoftmaxParameter

  • engine
    • CAFFE = 1
    • CUDNN = 2
  • axis
    沿着第几维做softmax,可以是正数(正序)和负数(倒序)
// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayermessage SoftmaxParameter {  enum Engine {    DEFAULT = 0;    CAFFE = 1;    CUDNN = 2;  }  optional Engine engine = 1 [default = DEFAULT];  // The axis along which to perform the softmax -- may be negative to index  // from the end (e.g., -1 for the last axis).  // Any other axes will be evaluated as independent softmaxes.  optional int32 axis = 2 [default = 1];}

2. 结构

caffe里的softmax层值关注softmax函数本身,是一个二部图。对于输入

zi(i=1,,k),

其对应输出为
ai=ezij=1kezj.

  • bottom
    如果[N C H W]的矩阵,N为batchsize,C为类别数,HxW被称作spatial dimention,此时zi就是第二维上的元素
  • top
    [N C H W]的矩阵,为对应输出

3. 正向传播

计算过程
Step1: 计算输入最大值

z=max{zi}

Step2: 减去最大值
zi=ziz

Step3: 求指数
zi=ezi

Step4: 求和
zsum=i=1kezi

Step5: softmax
zi=zizsum

代码

template <typename Dtype>void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,    const vector<Blob<Dtype>*>& top) {  const Dtype* bottom_data = bottom[0]->cpu_data();  Dtype* top_data = top[0]->mutable_cpu_data();  Dtype* scale_data = scale_.mutable_cpu_data();  // channles对应类别的数目  int channels = bottom[0]->shape(softmax_axis_);  int dim = bottom[0]->count() / outer_num_;  // 对top进行初始化,初始化为bottom的值  caffe_copy(bottom[0]->count(), bottom_data, top_data);  // We need to subtract the max to avoid numerical issues, compute the exp,  // and then normalize.  // 对outer_num_个数据依次处理  for (int i = 0; i < outer_num_; ++i) {    // 初始化scale_data为第i个数据,并找到softmax对应维度上的数据最大值    // Step1:    // initialize scale_data to the first plane    caffe_copy(inner_num_, bottom_data + i * dim, scale_data);    for (int j = 0; j < channels; j++) {      for (int k = 0; k < inner_num_; k++) {        scale_data[k] = std::max(scale_data[k],            bottom_data[i * dim + j * inner_num_ + k]);      }    }    // subtraction, Step2:    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_,        1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data);    // exponentiation, Step3:    caffe_exp<Dtype>(dim, top_data, top_data);    // sum after exp, Step4:    caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1.,        top_data, sum_multiplier_.cpu_data(), 0., scale_data);    // division, Step5:    for (int j = 0; j < channels; j++) {      caffe_div(inner_num_, top_data, scale_data, top_data);      top_data += inner_num_;    }  }}

4. 反向传播

计算过程
Step1: 求top_data和top_diff内积
Step2: 求差值,对应推导过程(lailaa)
Step3: 相乘,求偏导

推导过程

lz=laaz

其中:la=topdiffa=topdata
而:
aizj=(ezikezk)zj

ij
aizj=eziezj(kezk)2=aiaj

i=j时:
aizj=ezikezkeziezj(kezk)2=ajajaj

可以推出:
lzj=laazj=ilaiaizj=(laa)aj+lajaj=(lajlaa)aj

代码

template <typename Dtype>void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,    const vector<bool>& propagate_down,    const vector<Blob<Dtype>*>& bottom) {  const Dtype* top_diff = top[0]->cpu_diff();  const Dtype* top_data = top[0]->cpu_data();  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();  Dtype* scale_data = scale_.mutable_cpu_data();  int channels = top[0]->shape(softmax_axis_);  int dim = top[0]->count() / outer_num_;  caffe_copy(top[0]->count(), top_diff, bottom_diff);  for (int i = 0; i < outer_num_; ++i) {    // compute dot(top_diff, top_data) and subtract them from the bottom diff, Step1:    for (int k = 0; k < inner_num_; ++k) {      scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels,          bottom_diff + i * dim + k, inner_num_,          top_data + i * dim + k, inner_num_);    }    // subtraction, Step2:    caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1,        -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim);  }  // elementwise multiplication, Step3:  caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff);}
0 0
原创粉丝点击