GPIO的驱动模型

来源:互联网 发布:淘宝开店认证失败2017 编辑:程序博客网 时间:2024/05/17 09:30
    一、概述    GPIO是嵌入式系统最简单、最常用的资源了,比如点亮LED,控制蜂鸣器,输出高低电平,检测按键,等等。GPIO分输入和输出,在davinci linux中,有关GPIO的最底层的寄存器驱动,\arch\arm\mach-davinci目录下的gpio.c,这个是寄存器级的驱动,搞过单片机MCU的朋友应该比较熟悉寄存器级的驱动。    GPIO的驱动主要就是读取GPIO口的状态,或者设置GPIO口的状态。就是这么简单,但是为了能够写好的这个驱动,在LINUX上作了一些软件上的分层。为了让其它驱动可以方便的操作到GPIO,在LINUX里实现了对GPIO操作的统一接口,这个接口实则上就是GPIO驱动的框架,具体的实现文件为gpiolib.c在配置内核的时候,我们必须使用CONFIG_GENERIC_GPIO这个宏来支持GPIO驱动。    GPIO是与硬件体系密切相关的,linux提供一个模型来让驱动统一处理GPIO,即各个板卡都有实现自己的gpio_chip控制模块:request, free,input,output, get,set,irq...然后把控制模块注册到内核中,这时会改变全局gpio数组:gpio_desc[]. 当用户请求gpio时,就会到这个数组中找到,并调用这个GPIO对应的gpio_chip的处理函数。gpio实现为一组可用的 gpio_chip, 由驱动传入对应 gpio的全局序号去 request, dataout,datain, free. 这时会调用gpio_chip中具体的实现。    gpio是一组可控件的脚,由多个寄存器同时控制。通过设置对应的寄存器可以达到设置GPIO口对应状态与功能。数据状态,输入输出方向,清零,中断(那个边沿触发), 一般是一组(bank)一组的。    寄存器读写函数: __raw_writel() __raw_writeb() __raw_readl() __raw_readb()    二、linux 中GPIO模型的结构    //表示一个gpio口,含对应的gpio_chip.    //对于每一个gpio,都有一个gpio描述符,这个描述符包含了这个gpio所属的控制器即chip和一些标志,label等    struct gpio_desc {        struct gpio_chip    *chip;        unsigned long    flags;        /* flag symbols are bit numbers */        #define FLAG_REQUESTED 0        #define FLAG_IS_OUT 1        #define FLAG_RESERVED 2        #define FLAG_EXPORT 3 /* protected by sysfs_lock */        #define FLAG_SYSFS 4 /* exported via /sys/class/gpio/control */        #define FLAG_TRIG_FALL 5 /* trigger on falling edge */        #define FLAG_TRIG_RISE 6 /* trigger on rising edge */        #define FLAG_ACTIVE_LOW 7 /* sysfs value has active low */        #define FLAG_OPEN_DRAIN 8 /* Gpio is open drain type */        #define FLAG_OPEN_SOURCE 9 /* Gpio is open source type */                #define ID_SHIFT 16 /* add new flags before this one */        #define GPIO_FLAGS_MASK ((1 << ID_SHIFT) - 1)        #define GPIO_TRIGGER_MASK (BIT(FLAG_TRIG_FALL) | BIT(FLAG_TRIG_RISE))         #ifdef CONFIG_DEBUG_FS        const char    *label;    #endif    };    //采用了一个具有ARCH_NR_GPIOS大小的gpio描述符数组。这个描述符数组便代表了系统所有的gpio。    static struct gpio_desc gpio_desc[ARCH_NR_GPIOS];//ARCH_NR_GPIOS=144,即系统现在有144个GPIO口    //static struct davinci_gpio_controller chips[DIV_ROUND_UP(DAVINCI_N_GPIO, 32)];//将144个GPIO分成每32个一组    //一组GPIO控制器结构,例如GPIO0和GPIO1是一组(共32个GPIO口),共用一组寄存器,所以GPIO0和GPIO1荷载一起用chips[0]来控制    ///共有144个GPIO,分为4组(GPIO0~GPIO8),每组有2个banks(即GPIO0和GPIO1为1组),每组最多可以有32个GPIO,每组的控制寄存器空间有10个。    struct davinci_gpio_controller {        struct gpio_chip    chip;//每组对应的gpio_chip        int            irq_base;//每组对应的中断        spinlock_t        lock;//自旋锁        void __iomem        *regs;//每组的寄存器地址        void __iomem        *set_data;//设置数据寄存器地址        void __iomem        *clr_data;//清除数据寄存器地址        void __iomem        *in_data;//输入数据寄存器地址    };    //每一个davinci_gpio_controller结构都对应于一个gpio_chip结构,gpio_chip既可看成是davinci_gpio_controller结构的补充    //表示一个gpio controller.通过这个结构抽象化所有的GPIO源,而让板上其它的模块可以用相同的接口调用使用这些GPIO。    struct gpio_chip {        const char    *label;        struct device    *dev;        struct module    *owner;        int    (*request)(struct gpio_chip *chip,unsigned offset);//请求gpio        void    *free)(struct gpio_chip *chip,unsigned offset);//释放gpio        int    (*get_direction)(struct gpio_chip *chip,unsigned offset);        int    (*direction_input)(struct gpio_chip *chip,unsigned offset);//配置gpio为输入,返回当前gpio状态        int    (*get)(struct gpio_chip *chip,unsigned offset);//获取gpio的状态        int    (*direction_output)(struct gpio_chip *chip,unsigned offset, int value);//配置gpio为输出,并设置为value        int    (*set_debounce)(struct gpio_chip *chip,unsigned offset, unsigned debounce);//设置消抖动时间,尤其是gpio按键时有用        void    (*set)(struct gpio_chip *chip,unsigned offset, int value);//设置gpio为value值        int    (*to_irq)(struct gpio_chip *chip,unsigned offset);//把gpio号转换为中断号        void    (*dbg_show)(struct seq_file *s,struct gpio_chip *chip);        int    base;// 这个gpio控制器的gpio开始编号        u16    ngpio;//这个gpio控制器说控制的gpio数        const char    *const *names;        unsigned    can_sleep:1;        unsigned    exported:1;         #if defined(CONFIG_OF_GPIO)        struct device_node *of_node;        int of_gpio_n_cells;        int (*of_xlate)(struct gpio_chip *gc,const struct of_phandle_args *gpiospec, u32 *flags);    #endif    #ifdef CONFIG_PINCTRL        struct list_head pin_ranges;    #endif    };    //GPIO寄存器结构    struct davinci_gpio_regs {        u32 dir; // gpio方向设置寄存器        u32 out_data; // gpio设置为输出时,表示输出状态(0或1)        u32 set_data; // gpio设置为输出时,用于输出高电平        u32 clr_data; // gpio设置为输出时,用于输出低电平        u32 in_data; // gpio设置为输入时,用于读取输入值        u32 set_rising; // gpio中断上升沿触发设置        u32 clr_rising; // gpio中断上升沿触发清除        u32 set_falling; // gpio中断下降沿触发设置        u32 clr_falling; // gpio中断下降沿触发清除        u32 intstat; // gpio中断状态位,由硬件设置,可读取,写1时清除。    };    struct gpio {        unsigned gpio;//gpio号        unsigned long flags;//gpio标志        const char *label;//gpio名    };    三、GPIO的初始化    1.首先设置GPIO的管脚复用寄存器    static __init void da850_evm_init(void)    {        //.......        ret = davinci_cfg_reg_list(da850_gpio_test_pins);        if (ret)            pr_warning("da850_evm_init: gpio test ping mux setup failed: %d\n", ret);        //.......    }    2.根据板级结构的资源初始化chips数组,此函数在系统初始化时自动调用    static struct davinci_gpio_controller chips[DIV_ROUND_UP(DAVINCI_N_GPIO, 32)];//将144个GPIO分成每32个一组    static int __init davinci_gpio_setup(void)    {        int i, base;        unsigned ngpio;        struct davinci_soc_info *soc_info = &davinci_soc_info;//板级资源结构        struct davinci_gpio_regs *regs;        if (soc_info->gpio_type != GPIO_TYPE_DAVINCI)//判断GPIO类型            return 0;        ngpio = soc_info->gpio_num;//GPIO数量144        if (ngpio == 0){            pr_err("GPIO setup: how many GPIOs?\n");            return -EINVAL;        }        if (WARN_ON(DAVINCI_N_GPIO < ngpio))//DAVINCI_N_GPIO=144            ngpio = DAVINCI_N_GPIO;        gpio_base = ioremap(soc_info->gpio_base, SZ_4K);//将GPIO的寄存器物理基地址(#define DA8XX_GPIO_BASE        0x01e26000)映射到内存中        if (WARN_ON(!gpio_base))            return -ENOMEM;                //共有144个GPIO,分为4组(GPIO0~GPIO8),每组有2个banks(即GPIO0和GPIO1为1组),每组最多可以有32个GPIO,每组的控制寄存器空间有10个。        //chips[0]--chips[4],base值为0,32,64,96,128,ngpio分别为:32,32,32,32,16        for (i= 0, base = 0; base < ngpio;i++, base += 32){            chips[i].chip.label= "DaVinci";            //设置操作函数            chips[i].chip.direction_input= davinci_direction_in;            chips[i].chip.get= davinci_gpio_get;            chips[i].chip.direction_output= davinci_direction_out;            chips[i].chip.set= davinci_gpio_set;            chips[i].chip.base= base;//每一组开始的GPIO号            //每组控制的GPIO个数,一般为32个            chips[i].chip.ngpio= ngpio - base;            if (chips[i].chip.ngpio > 32)                chips[i].chip.ngpio= 32;            spin_lock_init(&chips[i].lock);            //找到这组GPIO的寄存器地址,初始化chips结构            regs = gpio2regs(base);            chips[i].regs= regs;//设置每组的寄存器            chips[i].set_data= ?s->set_data;            chips[i].clr_data= ?s->clr_data;            chips[i].in_data= ?s->in_data;                        gpiochip_add(&chips[i].chip);//注册gpio_chip        }        //chips数组添加到板级资源中        soc_info->gpio_ctlrs = chips;        soc_info->gpio_ctlrs_num = DIV_ROUND_UP(ngpio, 32);        davinci_gpio_irq_setup();//设置GPIO中断        return 0;    }    pure_initcall(davinci_gpio_setup);//linux初始化时会自动调用    static struct davinci_gpio_regs __iomem __init *gpio2regs(unsigned gpio)    {        void __iomem *ptr;                //根据GPIO的基地址累加,其中基地址(gpio_base+0)是REVID(Revision ID Register)寄存器        //(gpio_base+8)是BINTEN(GPIO Interrupt Per-Bank Enable Register)寄存器        //所以第一组寄存器从基地址+0x10开始        if (gpio < 32 * 1)            ptr = gpio_base + 0x10;        else if (gpio < 32 * 2)            ptr = gpio_base + 0x38;        else if (gpio < 32 * 3)            ptr = gpio_base + 0x60;        else if (gpio < 32 * 4)            ptr = gpio_base + 0x88;        else if (gpio < 32 * 5)            ptr = gpio_base + 0xb0;        else            ptr = NULL;        return ptr;    }    int gpiochip_add(struct gpio_chip *chip)    {        unsigned long    flags;        int        status = 0;        unsigned    id;        int        base = chip->base;                //检测gpio的有效性,判断这组GPIO的起始号是否在有效范围内        if ((!gpio_is_valid(base) || !gpio_is_valid(base + chip->ngpio - 1))&& base >= 0){            status = -EINVAL;            goto fail;        }        spin_lock_irqsave(&gpio_lock, flags);                //如果这组GPIO的起始号小于0,则动态的分配gpio的开始索引。        if (base < 0){            base = gpiochip_find_base(chip->ngpio);//这个函数在gpiolib.c中,在gpio_desc[]中分配chip->ngpio个空间(从最后往前分配),返回第一个index            if (base < 0){                status = base;                goto unlock;            }            chip->base = base;        }        //确保这些分配的gpio号没有被其他chip占用        for (id = base; id < base + chip->ngpio; id++){            if (gpio_desc[id].chip != NULL){                status = -EBUSY;                break;            }        }        //填充gpio_desc,将该组内的每个GPIO口的gpio_desc结构和该组的控制结构chip联系起来        if (status == 0){            for (id = base; id < base + chip->ngpio; id++){                gpio_desc[id].chip = chip;                gpio_desc[id].flags = !chip->direction_input? (1 << FLAG_IS_OUT): 0;//设置GPIO口标志            }        }        of_gpiochip_add(chip);    unlock:        spin_unlock_irqrestore(&gpio_lock, flags);        if (status)            goto fail;        status = gpiochip_export(chip);//与sysfs文件系统有关,这里不关心        if (status)            goto fail;        return 0;    fail:        /* failures here can mean systems won't boot... */        pr_err("gpiochip_add: gpios %d..%d (%s) failed to register\n",chip->base, chip->base + chip->ngpio - 1,chip->label ? : "generic");        return status;    }    四.gpio的申请    //所谓申请就是检测GPIO描述符desc->flags的FLAG_REQUESTED标志,已申请的话该标志是1,否则是0    //往往多个gpio作为一个数组来进行申请    int gpio_request_array(struct gpio *array, size_t num)    {        int i, err;        for (i= 0; i < num; i++, array++){//遍历数组中的每一个GPIO,gpio是GPIO号,flags是输入输出标志等,label是其取一个名字            err = gpio_request_one(array->gpio, array->flags, array->label);            if (err)                goto err_free;        }        return 0;    err_free:        while (i--)            gpio_free((--array)->gpio);        return err;    }    int gpio_request_one(unsigned gpio, unsigned long flags, constchar *label)    {        int err;                //gpio则为你要申请的哪一个管脚,label则是为其取一个名字。        err = gpio_request(gpio,label);        if (err)            return err;        if (flags & GPIOF_DIR_IN)//GPIO标志是输入            err = gpio_direction_input(gpio);//设置管脚为输入        else//GPIO标志是输出            err = gpio_direction_output(gpio,(flags & GPIOF_INIT_HIGH) ? 1: 0);//根据标志确定输出1还是0        if (err)            gpio_free(gpio);        return err;    }    int gpio_request(unsigned gpio, constchar *label)    {        struct gpio_desc    *desc;        struct gpio_chip    *chip;        int            status = -EINVAL;        unsigned long        flags;        //屏蔽中断        spin_lock_irqsave(&gpio_lock, flags);        if (!gpio_is_valid(gpio))//判断是否有效,也就是参数的取值范围判断            goto done;                    //根据GPIO号找到对应的GPIO描述符结构        desc = &gpio_desc[gpio];        chip = desc->chip;//找到该GPIO所在的组控制器        if (chip == NULL)            goto done;                    //计数加1        if (!try_module_get(chip->owner))            goto done;        //这里测试并设置flags的第FLAG_REQUESTED位,如果没有被申请就返回该位的原值0        if (test_and_set_bit(FLAG_REQUESTED, &desc->flags)== 0){            desc_set_label(desc,label ? : "?");//设置GPIO描述符结构desc的label字段            status = 0;        } else {            status = -EBUSY;            module_put(chip->owner);            goto done;        }        if (chip->request){/* chip->request may sleep */            spin_unlock_irqrestore(&gpio_lock, flags);            status = chip->request(chip, gpio - chip->base);            spin_lock_irqsave(&gpio_lock, flags);            if (status < 0){                desc_set_label(desc, NULL);                module_put(chip->owner);                clear_bit(FLAG_REQUESTED, &desc->flags);            }        }    done:        if (status)            pr_debug("gpio_request: gpio-%d (%s) status %d\n",gpio,label ? : "?", status);        spin_unlock_irqrestore(&gpio_lock, flags);        return status;    }    五.GPIO的操作    1.设置GPIO为输出或输入    int gpio_direction_input(unsigned gpio)    {        unsigned long        flags;        struct gpio_chip    *chip;        struct gpio_desc    *desc = &gpio_desc[gpio];        int            status = -EINVAL;        spin_lock_irqsave(&gpio_lock, flags);                //判断GPIO号是否有效        if (!gpio_is_valid(gpio))            goto fail;        //找到GPIO对应的gpio_chip结构        chip = desc->chip;        if (!chip || !chip->get || !chip->direction_input)            goto fail;                //确保此GPIO是在此组内,chip->base是此组GPIO的起始号,chip->ngpio是此组GPIO的个数        gpio -= chip->base;        if (gpio >= chip->ngpio)            goto fail;                    //确保GPIO已申请        status = gpio_ensure_requested(desc, gpio);        if (status < 0)            goto fail;        //到这里可以确保GPIO是有效的        spin_unlock_irqrestore(&gpio_lock, flags);        might_sleep_if(chip->can_sleep);        //status=0        if (status){            status = chip->request(chip, gpio);            if (status < 0){                pr_debug("GPIO-%d: chip request fail, %d\n",chip->base + gpio, status);                goto lose;            }        }        //调用底层的已经设置过的操作,这里即davinci_direction_in        status = chip->direction_input(chip, gpio);        if (status == 0)//返回成功            clear_bit(FLAG_IS_OUT, &desc->flags);//清除输出标志    lose:        return status;    fail:        spin_unlock_irqrestore(&gpio_lock, flags);        if (status)            pr_debug("%s: gpio-%d status %d\n",__func__, gpio, status);        return status;    }    int gpio_direction_output(unsigned gpio, int value)    {        //.........GPIO的检查,同上函数                //调用底层的已经设置过的操作,这里即davinci_direction_out        status = chip->direction_output(chip, gpio, value);        if (status == 0)//返回成功            set_bit(FLAG_IS_OUT, &desc->flags);//设置输出标志    lose:        return status;    fail:        spin_unlock_irqrestore(&gpio_lock, flags);        if (status)            pr_debug("%s: gpio-%d status %d\n",__func__, gpio, status);        return status;    }    //根据前边对gpio_chip结构的初始化,会调用\arch\arm\mach-davinci\gpio.c里的函数    static int davinci_direction_in(struct gpio_chip *chip, unsigned offset)    {        return __davinci_direction(chip, offset, false, 0);    }    static int davinci_direction_out(struct gpio_chip *chip, unsigned offset, int value)    {        return __davinci_direction(chip, offset, true, value);    }    static inline int __davinci_direction(struct gpio_chip *chip,unsigned offset, bool out, int value)    {        struct davinci_gpio_controller *d = chip2controller(chip);        struct davinci_gpio_regs __iomem *g = d->regs;//找到此组GPIO的控制寄存器地址        unsigned long flags;        u32 temp;        u32 mask = 1 << offset;        spin_lock_irqsave(&d->lock, flags);        temp = __raw_readl(&g->dir);//读出当前寄存器的输入输出方向                if (out){//为1设置输出            temp &= ~mask;            __raw_writel(mask, value ? &g->set_data: &g->clr_data);//确定是用于输出高电平还是输出低电平        }        else {//为0设置为输入            temp |= mask;        }        __raw_writel(temp, &g->dir);//写入方向寄存器        spin_unlock_irqrestore(&d->lock, flags);        return 0;    }    2.获取gpio的状态    int __gpio_get_value(unsigned gpio)    {        struct gpio_chip    *chip;        chip = gpio_to_chip(gpio);        WARN_ON(chip->can_sleep);        return chip->get ? chip->get(chip, gpio - chip->base): 0;//调用davinci_gpio_get    }    static int davinci_gpio_get(struct gpio_chip *chip, unsigned offset)    {        struct davinci_gpio_controller *d = chip2controller(chip);        struct davinci_gpio_regs __iomem *g = d->regs;        return (1 << offset) & __raw_readl(&g->in_data);    }    3.设置GPIO的值    void __gpio_set_value(unsigned gpio, int value)    {        struct gpio_chip    *chip;        chip = gpio_to_chip(gpio);        WARN_ON(chip->can_sleep);        chip->set(chip, gpio - chip->base, value);//调用davinci_gpio_set    }    static void davinci_gpio_set(struct gpio_chip *chip, unsigned offset, int value)    {        struct davinci_gpio_controller *d = chip2controller(chip);        struct davinci_gpio_regs __iomem *g = d->regs;        __raw_writel((1 << offset), value ? &g->set_data: &g->clr_data);    }    六、GPIO驱动编写    1.首先要申请GPIO口    2.注册设备    3.创建GPIO的sysfs相关文件    #define GPIO_MAJOR 199         // major device NO.    #define GPIO_MINOR 0         // minor device NO.    #define DEVICE_NAME "omapl138_gpios" /*定义设备驱动的名字,或设备节点名称*/    #define SET_OUTPUT_LOW 0    #define SET_OUTPUT_HIGH 1    #define GET_VALUE 2    #define SET_INPUT 3    static struct class *gpio_class;    static struct gpio gpio_array[] =    {        /*{ GPIO_TO_PIN(0, 0), GPIOF_OUT_INIT_LOW,     "RTU_WDI_SIGNAL" },will request fail*/        { GPIO_TO_PIN(0, 1), GPIOF_OUT_INIT_HIGH,"RTU_PLC_BAK_IO1"},        { GPIO_TO_PIN(0, 2), GPIOF_OUT_INIT_LOW,     "RTU_CHG_EN" },        { GPIO_TO_PIN(0, 3), GPIOF_IN,         "RTU_CHG_PG"},        { GPIO_TO_PIN(0, 5), GPIOF_IN,         "RTU_USB_OC_OUT"},        { GPIO_TO_PIN(0, 6), GPIOF_OUT_INIT_LOW,     "RTU_RUN_IND_LED" },        { GPIO_TO_PIN(1, 10), GPIOF_IN,         "RTU_TSC_BUSY"},        { GPIO_TO_PIN(1, 11), GPIOF_IN,        "RTU_PENIRQn"},        { GPIO_TO_PIN(1, 12), GPIOF_OUT_INIT_LOW,"RTU_uP_Q26x_RESET" },        { GPIO_TO_PIN(1, 13), GPIOF_OUT_INIT_HIGH,"RTU_uP_GPRS_PWR_EN" },        { GPIO_TO_PIN(1, 14), GPIOF_OUT_INIT_HIGH,"RTU_uP_Q26x_ON/OFF" },        { GPIO_TO_PIN(2, 1), GPIOF_OUT_INIT_LOW,"RTU_PLC_Reset" },        { GPIO_TO_PIN(2, 2), GPIOF_OUT_INIT_LOW,"RTU_PLC_T_Reg" },        { GPIO_TO_PIN(2, 4), GPIOF_OUT_INIT_LOW,"RTU_PLC_BAK_IO2" },        { GPIO_TO_PIN(2, 5), GPIOF_OUT_INIT_LOW,"RTU_RS485_RE" },        { GPIO_TO_PIN(2, 15), GPIOF_OUT_INIT_HIGH,"RTU_CHPWR_CS" },        { GPIO_TO_PIN(3, 9), GPIOF_OUT_INIT_HIGH,"RTU_RS485_DE" },        { GPIO_TO_PIN(6, 1), GPIOF_OUT_INIT_HIGH,"RTU_uP_VPIF_CLKO3" },        { GPIO_TO_PIN(6, 9), GPIOF_IN,         "RTU_KEY_IN2"},        { GPIO_TO_PIN(6, 11), GPIOF_IN,        "RTU_ALARM_IN5"},        { GPIO_TO_PIN(6, 15), GPIOF_OUT_INIT_HIGH,"RTU_uP_RESETOUTn"},    };    static int gpio_open(struct inode *inode,struct file *file)    {        printk(KERN_WARNING"gpio open success!\n");        return 0;    }    static int gpio_release(struct inode *inode, struct file *filp)    {      printk (KERN_ALERT "Device gpio released\n");      return 0;    }    static int gpio_read(struct file*f,char *dst,size_tsize,loff_t*offset)    {        unsigned char num;        __copy_to_user(&num,dst,1);    #ifdef DEBUG         printk("__copy_to_user:%d\n",num);    #endif        return 0;    }    static int gpio_write(struct file*f,constchar *src,size_tsize,loff_t *offset)    {         unsigned char num;         __copy_from_user(&num,src,1);    #ifdef DEBUG         printk("__copy_from_user:%d\n",num);    #endif         return 0;    }    static long gpio_ioctl(struct file *file,unsigned int cmd,unsigned long gpio)    {        int i;        unsigned long gpio_num = (gpio/100)*16+gpio%100;        for (i= 0; i < ARRAY_SIZE(gpio_array);i++){            if(gpio_array[i].gpio== gpio_num)                goto valid_gpio;        }        return -1;                valid_gpio:        switch(cmd)//cmd表示应用程序传入的 GPIO 动作        {            case SET_OUTPUT_LOW://0            {                gpio_direction_output(gpio_num, 0);                break;            }            case SET_OUTPUT_HIGH://1            {                gpio_direction_output(gpio_num, 1);                break;            }            case GET_VALUE://2            {                return gpio_get_value(gpio_num);                }            case SET_INPUT://3            {                gpio_direction_input(gpio_num);                break;            }            default:            {                printk(KERN_EMERG "GPIO command mistake!!!\n");                break;            }        }        return 0;    }                static const struct file_operations gpio_fops=    {      .owner = THIS_MODULE,      .open = gpio_open,      .release = gpio_release,      .read = gpio_read,      .write = gpio_write,      .unlocked_ioctl = gpio_ioctl,    };    static int __init gpio_init(void)/*内核初始化会调用该函数*/    {        int ret;                ret = gpio_request_array(gpio_array, ARRAY_SIZE(gpio_array));        if (ret < 0)        {            printk(KERN_EMERG "GPIO request failed\n");            goto request_failed;        }                dev_t my_dev_no;        struct cdev *gpio_cdev;        gpio_cdev = cdev_alloc();        if(gpio_cdev == NULL)        {            printk(KERN_EMERG "Cannot alloc cdev\n");            goto request_failed;        }        cdev_init(gpio_cdev,&gpio_fops);        gpio_cdev->owner=THIS_MODULE;        int result=alloc_chrdev_region(&my_dev_no,0,1,DEVICE_NAME);        if(result < 0)        {            printk(KERN_EMERG "alloc_chrdev_region failed\n");            goto request_failed;        }        ret=cdev_add(gpio_cdev,my_dev_no,1);                      ret = register_chrdev(GPIO_MAJOR, DEVICE_NAME, &gpio_fops);//驱动字符设备         if(ret < 0)         {        printk(KERN_EMERG "GPIO register failed\n");        goto request_failed;         }                //在sysfs文件系统下创建一个类      gpio_class = class_create(THIS_MODULE, DEVICE_NAME);      //device_create-->device_create_vargs-->device_register创建相应的sysfs文件(如dev文件),用于udev根据sysfs文件系统下的dev文件创建设备节点        device_create(gpio_class, NULL, MKDEV(GPIO_MAJOR, GPIO_MINOR), NULL, DEVICE_NAME);        return ret;            request_failed:        gpio_free_array(gpio_array, ARRAY_SIZE(gpio_array));        return ret;    }    static void __exit gpio_exit(void)    {        device_destroy(gpio_class, MKDEV(GPIO_MAJOR, GPIO_MINOR));      class_unregister(gpio_class);      class_destroy(gpio_class);      unregister_chrdev(GPIO_MAJOR, DEVICE_NAME);    }    module_init(gpio_init);    module_exit(gpio_exit);    MODULE_LICENSE("GPL");    MODULE_VERSION ("v2.0");    MODULE_AUTHOR("wbl <>");    MODULE_DESCRIPTION("OMAPL138 GPIO driver");


0 0
原创粉丝点击