Java内存模型与线程

来源:互联网 发布:广州java招聘 编辑:程序博客网 时间:2024/06/05 16:33

Java内存模型与线程

概述

在许多情况下,让计算机同时去做几件事,不仅是因为计算机的运算能力强大了,还有一个很重要的原因是计算机的运算速度与它的存储和通信子系统速度的差距太大,大量的时间花费在磁盘I/O、网络通信或者数据库访问上。

衡量一个服务性能的高低好坏,每秒事务处理数(Transactions Per Second, TPS)是最重要的指标之一,它代表着一秒内服务器端平均能响应的请求总数,而TPS值与程序的并发能力又有非常密切的关系。对于计算量相同的任务,程序线程并发协调得有条不紊,效率自然就会越高;反之,线程间频繁阻塞甚至死锁,将会大大降低程序的并发能力。

硬件的效率与一致性

基于高速缓存的存储交互很好地解决了处理器与内存的速度矛盾,但是也为计算机系统带来了更高的复杂度,因为它引入了一个新的问题:缓存一致性。

处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果是一致的。

Java虚拟机的即时编译器中也有类似的指令重排序(Instruction Reorder)优化。

Java内存模型

Java虚拟机规范中试图定义一种Java内存模型来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致性的内存访问效果。

线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行。

主内存与工作内存

Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量值这样的底层细节。此处的变量(Variable)与Java编译中所说的变量略有区别,它包括了实例字段,静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不存在竞争的问题。了为获得比较好的执行效率,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器调整代码执行顺序这类权限。

Java内存模型规定了所有的变量都存储在主内存(Main Memory)中。每条线程还有自己的工作内存(Working Memory),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取,赋值等)都必须是工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如下图:

线程、主内存、工作内存三者的交互关系

内存间交互操作

一个变量如何从主内存拷贝到工作内存,如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成。这8种操作都是原子性的、不可再分的(对double和Long类型除外)。

  1. lock(锁定):作用于主内存变量,它把一个变量标识为一条线程独占的状态。
  2. unlock(解锁):作用于主内存变量,它把一个处理锁定的状态的变量释放出来,释放后的变量才可以被其它线程锁定,unlock之前必须将变量值同步回主内存。
  3. read(读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
  4. load(载入):作用于工作内存变量,它把read操作从主内存中得到的值放入工作内存的变量副本中。
  5. use(使用):作用于工作内存中的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的字节码指令时将会执行这个操作。
  6. assign(赋值):作用于工作内存变量,它把一个从执行引擎接到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
  7. store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。
  8. write(写入):作用于主内存的变量,它把store操作从工作内存中得到的值放入主内存的变量中。

如果要把一个变量从主内存复制到工作内存,那就要顺序地执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序地执行store和write操作。Java内存模型只是要求上述两个操作必须按顺序执行,而没有保证必须是连续执行。也就是说read与load之间、store与write之间是可以插入其它指令的,如果对主在内中的变量a,b进行访问时,一种可能出现的顺序是read a、readb、loadb、load a。除此之外,Java内存模型还规定了执行上述八种基础操作时必须满足如下规则:

  1. 不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者从工作内存发起回写但主内存不接受的情况出现。
  2. 不允许一个线程丢弃它的最近的assign操作,即变量在工作内存中改变(为工作内存变量赋值)了之后必须把该变化同步回主内存。
  3. 不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步到主内存中。
  4. 一个新变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load和assign)的变量,换话说就是一个变量在实施use和store操作之前,必须先执行过了assign和load操作。
  5. 一个变量在同一时刻只允许一个线程对其进行lock操作,但是lock操作可以被同一线程执行多次lock,执行多次lock后,在执行相同次数的unlock操作,变量才会被释放。
  6. 如果一个变量事先没有被load操作锁定,则不允许对它执行unlock操作:也不允许去unlock一个被其它线程锁定的变量。
  7. 对一个变量执行unloack之前,必须把此变量同步回主内存中(执行store和write操作)

对于volatile型变量的特殊规则

关键字volatile可以说是Java虚拟机提供的最轻量级的同步机制,但是它并不容易完全被正确、完整地理解,以至于许多程序员都习惯不使用它,遇到竞争问题的时候一律使用synchronized来进行同步。

当一个变量定义成volatile之后,它将具备两种特性:第一是保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其它线程是可以立即得知的。普通变量不能做到这一点,普通变量的值在线程间传递均需要通过主内存来完成,如:线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成了之后再从主内存进行读取操作,新变量的值才会对线程B可见。

关于volatile变量的可见性,很多人误以为以下描述成立:“volatile对所有线程是立即可见的,对volatile变量所有的写操作都能立即返回到其它线程之中,换句话说,volatile变量在各个线程中是一致的,所以基于volatile变量的运算在并发下是安全的”。这句话的论据部分并没有错,但是其论据并不能得出“基于基于volatile变量的运算在并发下是安全的”这个结论。volatile变量在各个线程的工作内存中不存在一致性问题(在各个线程的工作内存中volatile变量也可以存在不一致的情况,但由于每次使用之前都要先刷新,执行引擎看不到不致的情况,因此可以认为不存在一致性问题),但是Java里的运算并非原子操作,导致volatile变量的运算在并发下一样是不安全的。

由于volatile变量只能保证可见性,在不符合以下条件规则的去处场景中,仍然需要通过加锁(synchronized或java.util.concurrent中的原子类)来保证原子性。

  1. 运算结果不依赖变量的当前值,或者能确保只有单一的线程改变变量的值。
  2. 变量不需要与其它的状态变量共同参与不变约束。

使用volatile变量的第二个语义是禁止指令重排序优化,普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方能获取到正确的结果,而不能保证变量的赋值操作的顺序与程序代码中的执行顺序一致。因为在一个线程的方法执行过程中无法感知到这一点,这也就是Java内存模型中描述的所谓的”线程内表现为串行的语义“(Within-Thread As-If-Serial Sematics)。

Map configOptions;  char[] configText;  //此变量必须定义为volatile  volatile boolean initialized = false;  //假设以下代码在线程A中执行  //模拟读取配置信息,当读取完成后  //将initialized设置为true来通知其它线程配置可用  configOptions = new HashMap();  configText = readConfigFile(fileName);  processConfigOptions(configText, configOptions);  initialized = true;  //假设以下代码在线程B中执行  //等线程A待initialized为true,代表线程A已经把配置信息初始化完成  while(!initialized) {      sleep();  }  //使用线程A中初始化好的配置信息  doSomethingWithConfig();

上面为一段伪代码,其中描述的场景十分常见,只是我们在处理配置文件时一般不会出现并发而已。如果定义initialized变量时没有使用volatile修饰,就可能会由于指令重排序的优化,导致位于线程A中最后一句的代码”initialized = true“被提前执行,这样在线程B中使用配置信息的代码就可能出现错误,而volatile关键字则可以避免此类情况的发生。

lock addl $0x0,(%esp)指令把修改同步到内存时,意味着所有之前的操作都已经执行完成,这样便形成了“指令重排序无法越过内存屏障”的效果。

volatile变量读取操作的性能消耗与普通变量几乎没有什么差别,但是写操作则可能会慢一些,因为它需要再代码中插入许多内存屏障指令来保证处理器不发生乱序执行。不过即便如此,大多数场景下volatile的总开销仍然要比锁低,我们在volatile与锁之中选择的唯一依据仅仅是volatile的语义能否满足使用场景的需求。

如一个变量的修改不依赖与原值,则这个时候可以使用volatile关键字实现先行发生关系。

对于Long和double型变量的特殊规则

对于32位平台,64位的操作需要分两步来进行,与主存的同步。所以可能出现“半个变量”的状态。

在实际开发中,目前各种平台下的商用虚拟机几乎都选择把64位数据的读写操作作为原子操作来对待,因此我们在编码时一般不需要把用到的long和double变量专门声明为volatile。

原子性、可见性与有序性

Java内存模型是围绕着并发过程中如何处理原子性、可见性、有序性这三个特征来建立的,下面是这三个特性的实现原理:

原子性(Atomicity)

由Java内存模型来直接保证的原子性变量操作包括read、load、use、assign、store和write六个,大致可以认为基础数据类型的访问和读写是具备原子性的。如果应用场景需要一个更大范围的原子性保证,Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock与unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐匿地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块—synchronized关键字,因此在synchronized块之间的操作也具备原子性。

可见性(Visibility)

可见性就是指当一个线程修改了线程共享变量的值,其它线程能够立即得知这个修改。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方法来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是volatile的特殊规则保证了新值能立即同步到主内存,以及每使用前立即从内存刷新。因为我们可以说volatile保证了线程操作时变量的可见性,而普通变量则不能保证这一点。

除了volatile之外,Java还有两个关键字能实现可见性,它们是synchronized。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store和write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段是构造器一旦初始化完成,并且构造器没有把“this”引用传递出去,那么在其它线程中就能看见final字段的值。

有序性(Ordering)

Java内存模型中的程序天然有序性可以总结为一句话:如果在本线程内观察,所有操作都是有序的;如果在一个线程中观察另一个线程,所有操作都是无序的。前半句是指“线程内表现为串行语义”,后半句是指“指令重排序”现象和“工作内存主主内存同步延迟”现象。

Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一时刻只允许一条线程对其进行lock操作”这条规则来获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。

先行发生原则

如果Java内存模型中所有的有序性都只靠volatile和synchronized来完成,那么有一些操作将会变得很啰嗦,但是我们在编写Java并发代码的时候并没有感觉到这一点,这是因为Java语言中有一个“先行发生”(Happen-Before)的原则。这个原则非常重要,它是判断数据是否存在竞争,线程是否安全的主要依赖。

先行发生原则是指Java内存模型中定义的两项操作之间的依序关系,如果说操作A先行发生于操作B,其实就是说发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包含了修改了内存中共享变量的值、发送了消息、调用了方法等。

下面是Java内存模型下一些”天然的“先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们进行随意地重排序。

  1. 程序次序规则(Pragram Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。准确地说应该是控制流顺序而不是程序代码顺序,因为要考虑分支、循环结构。
  2. 管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是同一个锁,而”后面“是指时间上的先后顺序。
  3. volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读取操作,这里的”后面“同样指时间上的先后顺序。
  4. 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
  5. 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread.join()方法结束,Thread.isAlive()的返回值等作段检测到线程已经终止执行。
  6. 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测是否有中断发生。
  7. 对象终结规则(Finalizer Rule):一个对象初始化完成(构造方法执行完成)先行发生于它的finalize()方法的开始。
  8. 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

一个操作”时间上的先发生“不代表这个操作会是”先行发生“,那如果一个操作”先行发生“是否就能推导出这个操作必定是”时间上的先发生“呢?也是不成立的,一个典型的例子就是指令重排序。所以时间上的先后顺序与先生发生原则之间基本没有什么关系,所以衡量并发安全问题一切必须以先行发生原则为准。

Java与线程

并发不一定要依赖多线程(如PHP中很常见的多进程并发),但在Java中,谈论并发,大多数都与线程脱不开关系。

线程的实现

线程时CPU的最小调度单位。

Thread类与大部分的Java API有显著的差别,它的所有关键方法都是声明为Native的。一个Native方法往往意味着这个方法没有使用或无法使用平台无关的手段来实现。

实现线程主要有3种方式:

  1. 使用内核线程实现
  2. 使用用户线程实现
  3. 使用用户线程加轻量级进程混合实现。

Java线程调度

分为协同式线程调度和抢占式线程调度。

线程优先级并不是太靠谱,原因是Java的线程是通过映射到系统的原生线程上来实现的,所以线程调度最终还是取决于操作系统。

状态转换

状态转换

以下方法会让线程陷入无限期的等待状态:

  • 没有设置Timeout参数的Object.wait()方法
  • 没有设置Timeout参数的Thread.join()方法
  • LockSupport.park()方法

以下方法会让线程进入限期等待状体:

  • Thread.sleep()
  • 设置了Timeout参数的Object.wait()方法
  • 设置了Timeout参数的Thread.join()方法
  • LockSupport.parkNanos()方法
  • LockSupport.parkUntil()方法

摘自:
深入理解Java虚拟机
备注:
转载请注明出处:http://blog.csdn.net/wsyw126/article/details/62545755
作者:WSYW126

0 1
原创粉丝点击